Skip to main content

Circadian Organization in Nonmammalian Vertebrates

  • Chapter
Book cover Circadian Clocks

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 12))

Abstract

Remarkable progress has been made in the last quarter century in our knowledge of the concrete nature of biological clocks both at the levels of tissue and organs and at molecular levels. Studies in vertebrates have focused on the anatomic locations of sites involved in generating circadian rhythms, the ways these sites communicate with one another, and the ways that external stimuli, most notably light, affect the system. These studies have revealed a surprising complexity in the organization of circadian systems in nonmammalian vertebrates. Nonmammalian vertebrates are multioscillator in nature, that is, more than one circadian clock is involved in generating rhythmicity, and there are multiple photic input pathways as well. At least three sites have been shown to exhibit autonomous circadian rhythmicity: the pineal organ, the suprachiasmatic area of the hypothalamus, and the eyes. Circadian “organization” is accomplished by coupling together these rhythmic sites via hormonal and neural pathways so that the multiple clocks can act in a coherent fashion to drive the myriad overt rhythms that the organism possesses. In some cases, persistent rhythmicity in one site may require periodic inputs from another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrett, R. K., Sc Takahashi, J. S. (1997). Lability of circadian pacemaker amplitude in chick pineal cells: A temperature-dependent process. Journal of Biological Rhythms, 12, 309–318.

    PubMed  CAS  Google Scholar 

  • Barrett, R. K., & Underwood, H. (1991). Retinally perceived light can entrain the pineal melatonin rhythm in Japanese quail. Brain Research, 563, 87–93.

    PubMed  CAS  Google Scholar 

  • Barrett, R. K., & Underwood, H. (1992). The superior cervical ganglia are not necessary for entrainment or persistence of the pineal melatonin rhythm in Japanese quail. Brain Research, 569, 249–254.

    PubMed  CAS  Google Scholar 

  • Besharse, J. C., & Dunis, D. A. (1983). Methoxyindoles and photoreceptor metabolism: activation of rod shedding. Science, 219, 1341–1343.

    PubMed  CAS  Google Scholar 

  • Besharse, J. C., & Iuvone, R. M. (1983). Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature, 305, 133–135.

    PubMed  CAS  Google Scholar 

  • Bolliet, V., Mi, M. A., Anctil, M., & Zachmann, A. (1993). Melatonin secretion in vitro from the pineal complex of the lamprey Petromyzon marinas. General and Comparative Endocrinology, 89, 101–106.

    PubMed  CAS  Google Scholar 

  • Bolliet, V., Bégay, V., Rervault, J.-P., Mi, M. A., Collin, J.-P., & Falcón, J. (1994). Multiple circadian oscillators in the photosensitive pike pineal gland: A study using organ and cell culture. Journal of Pineal Research, 16, 77–84.

    PubMed  CAS  Google Scholar 

  • Bolliet, V., Mi, M. A., Lapointe, E J., & Falcón, J. (1996). Rhythmic melatonin secretion in different teleost species: An in vitro study. Journal of Comparative Physiology B, 165, 677–683.

    CAS  Google Scholar 

  • Cahill, G. M. (1996). Circadian regulation of melatonin production in cultured zebrafish pineal and retina. Brain Research, 708, 177–181.

    PubMed  CAS  Google Scholar 

  • Cahill, G. M., & Besharse, J. C. (1991). Resetting the circadian clock in Xenopus eyecups: Regulation of retinal melatonin rhythms by light and D2 dopamine receptors. Journal of Neuroscience, 11, 2959–2971.

    PubMed  CAS  Google Scholar 

  • Cahill, G. M., & Besharse, J. C. (1992). Light-sensitive melatonin synthesis by Xenopus photoreceptors after destruction of the inner retina. Visual Neuroscience, 8, 487–490.

    PubMed  CAS  Google Scholar 

  • Cahill, G. M., & Besharse, J. C. (1993). Circadian clock functions localized in Xenopus retinal photoreceptors. Neuron, 10, 573–577.

    PubMed  CAS  Google Scholar 

  • Cahill, G. M., & Besharse, J. C. (1995). Circadian rhythmicity in vertebrate retinas: Regulation by a photoreceptor oscillator. Progress in Retinal and Eye Research, 14, 267–291.

    CAS  Google Scholar 

  • Cahill, G. M., Grace, M. S., & Besharse, J. C. (1991). Rhythmic regulation of retinal melatonin: Metabolic pathways, neurochemical mechanisms, and the ocular circadian clock. Cellular and Molecular Neurobiology, 11, 529–560.

    PubMed  CAS  Google Scholar 

  • Cassone, V. M., & Menaker, M. (1983). Sympathetic regulation of chicken pineal rhythms Brain Research, 272, 311–317.

    PubMed  CAS  Google Scholar 

  • Cassone, V. M., & Moore, R. Y. (1987). Retinohypothalamic projection and suprachiasmatic nucleus of the house sparrow, Passer domesticus. Journal of Comparative Neurology, 266, 171–182.

    PubMed  CAS  Google Scholar 

  • Cassone, V. M., Forsyth, A. M., & Woodlee, G. L. (1990). Hypothalamic regulation of circadian nor-adrenergic input to the chick pineal gland. Journal of Comparative Physiology A, 167, 187–192.

    CAS  Google Scholar 

  • Cassone, V. M., Brooks, D. S., & Kelm, T. A. (1995). Comparative distribution of 2[125I]indomelatonin binding in the brains of diurnal birds: Outgroup analysis with turtles. Brain, Behavior and Evolution, 45, 241–256.

    CAS  Google Scholar 

  • Chabot, C. C., & Menaker, M. (1992a). Circadian feeding and locomotor rhythms in pigeons and house sparrows. Journal of Biological Rhythms, 7, 287–299.

    CAS  Google Scholar 

  • Chabot, C. C., & Menaker, M. (1992b). Effects of physiological cycles of infused melatonin on circadian rhythmicity in pigeons. Journal of Comparative Physiology A, 170, 615–622.

    CAS  Google Scholar 

  • Chiba, A., Kikuchi, M., & Aoki, K. (1993). The effects of pinealectomy and blinding on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. Journal of Comparative Physiology A, 172, 683–691.

    Google Scholar 

  • Chiba, A., Kikuchi, M., & Aoki, K. (1995). Entrainment of the circadian locomotor activity rhythm in the Japanese newt by melatonin injections. Journal of Comparative Physiology A, 176, 473–477.

    CAS  Google Scholar 

  • Cogburn, L. A., Wilson-Placentra, S., & Letcher, L. R. (1987). Influence of pinealectomy on plasma and extrapineal melatonin rhythms in young chickens (Gallus domesticus). General and Comparative Endocrinology, 68, 343–356.

    PubMed  CAS  Google Scholar 

  • Collin, J.-P., & Oksche, A. (1981). Structural and functional relationships in the nonmammalian pineal organ. In R. J. Reiter (Ed.), The pineal gland. Vol. 1. Anatomy and biochemistry (pp. 27–67). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Collin, J.-P., Voisin, P., Falcón, J., Faure, J.-P., Brisson, P., & Defaye, J.-R. (1989). Pineal transducers in the course of evolution: Molecular organization, rhythmic metabolic activity and role. Archives of Histology and Cytology, 52, 441–449.

    PubMed  Google Scholar 

  • Delgado, M. J., & Vivien-Roels, B. (1989). Effect of environmental temperature and photoperiod on the melatonin levels in the pineal, lateral eye, and plasma of the frog, Rana perezi: Importance of ocular melatonin. General and Comparative Endocrinology, 75, 46–53.

    PubMed  CAS  Google Scholar 

  • Ebihara, S., & Kawamura, H. (1981). The role of the pineal organ and the suprachiasmatic nucleus in the control of circadian locomotor rhythms in the Java sparrow, Padda oryzivora. Journal of Comparative Physiology, 141, 207–214.

    Google Scholar 

  • Ebihara, S., Uchiyama, K., & Oshima, I. (1984). Circadian organization in the pigeon, Columba Livia: The role of the pineal organ and the eye. Journal of Comparative Physiology A, 154, 59–69.

    Google Scholar 

  • Ebihara, S., Oshima, I., Yamada, H., Goto, M., & Sato, K. (1987). Circadian organization in the pigeon. In T. Hiroshige & K. Honma (Eds.), Comparative aspects of circadian clocks, (pp. 84–94). Sapporo, Japan: Hokkaido University Press.

    Google Scholar 

  • Ebisawa, T., Karne, S., Lerner, M. R., & Reppert, S. M. (1994). Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proceedings of the National Academy of Sciences of the USA, 91, 6133–6137.

    PubMed  CAS  Google Scholar 

  • Eriksson, L. O. (1972). Die Jahresperiodik augen-und pinealorganloser Bachsaiblinge Salvelinus fontinalis Mitchell. Aquilo Serie Zoologica, 13, 8–12.

    Google Scholar 

  • Falcón, J., & Collin, J.-P. (1991). Pineal-retinal relationships: Rhythmic biosynthesis and immunocytochemical localization of melatonin in the retina of the pike (Esox lucius). Cell and Tissue Research, 265, 601–609.

    Google Scholar 

  • Falcón, J., Marmillon, J. B., Claustrat, B., & Collin, J.P. (1989). Regulation of melatonin secretion in a photoreceptive pineal organ: An in vitro study in the pike. Journal of Neuroscience, 9, 1943–1950.

    PubMed  Google Scholar 

  • Falcón, J., Bolliet, V., Ravault, J. P., Chesneau, D., Mi, M. A., & Collin, J.-P. (1994a). Rhythmic secretion of melatonin by the superfused pike pineal organ: Thermo-and photoperiod interaction. Neuroendocrinology, 60, 535–543.

    Google Scholar 

  • Falcón, J., Bégay, V., Goujon, J. M., Voisin, P., Guerlotté, J., & Collin, J: P. (1994b) Immunocytochemical localisation of hydroxyindole-O-methyltransferase in pineal photoreceptor cells of several fish species. Journal of Comparative Neurology, 341, 559–566.

    Google Scholar 

  • Firth, B. T., & Kennaway, D. J. (1989). Thermoperiod and photoperiod interact to affect the phase of the plasma melatonin rhythm in the lizard, Tiliqua rugosa. Neuroscience Letters, 106, 125–130.

    PubMed  CAS  Google Scholar 

  • Foà, A. (1991). The role of the pineal and the retinae in the expression of circadian locomotor rhythmicity in the ruin lizard Podarcis sicula. Journal of Comparative Physiology A, 169, 201–207.

    Google Scholar 

  • Foà, A., & Menaker, M. (1988). Contribution of pineal and retinae to the circadian rhythms of circulating melatonin in pigeons. Journal of Comparative Physiology A, 164, 25–30.

    Google Scholar 

  • Foà, A., Minutini, L., & Innocenti, A. (1992). Melatonin: A coupling device between oscillators in the circadian system of the ruin lizard Podarcis sicula. Comparative Biochemistry and Physiology, 103A, 719–723.

    Google Scholar 

  • Foster, R. G., & Follett, B. K. (1985). The involvement of a rhodopsin like photopigment in the photo-periodic response of the Japanese quail. Journal of Comparative Physiology A, 157, 519–528.

    CAS  Google Scholar 

  • Foster, R. G., Timmers, A. M., Schalken, J. J., & De Grip, W. J. (1989). A comparison of some photoreceptor characteristics in the pineal and retina II. The Djungarian hamster (Phodopus sungorus). Journal of Comparative Physiology A, 165, 565–572.

    CAS  Google Scholar 

  • Foster, R. G., Garcia-Fernandez, J. M., Provencio, I., & DeGrip, W. J. (1993). Opsin localization and chromophore retinoids identified within the basal brain of the lizard Anolis carolinensis. Journal of Comparative Physiology A, 172, 33–45.

    Google Scholar 

  • Foster, R. G., Grace, M. S., Provencio, I., DeGrip, W. J., & Garcia-Fernandez, J. M. (1994). Identification of vertebrate deep brain photoreceptors. Neuroscience and Biobehavioral Reviews, 18, 541–546.

    PubMed  CAS  Google Scholar 

  • Fuchs, J. L. (1983). Effects of pinealectomy and subsequent melatonin implants on activity rhythms in the house finch (Carpodacus mexicanus). Journal of Comparative Physiology, 153, 413–419.

    Google Scholar 

  • Garcia-Fernandez, J. M., & Foster, R. G. (1994). Immunocytochemical identification of photoreceptor proteins in hypothalamic cerebrospinal fluid-contacting neurons of the larval lamprey (Petromyzon marinus). Cell and Tissue Research, 275, 319–326.

    CAS  Google Scholar 

  • Garg, S. K., & Sundararaj, B. I. (1986). Role of pineal in the regulation of some aspects of circadian rhythmicity in the catfish, Heteropneustes fossilis (Bloch). Chronobiologia, 13, 1–11.

    PubMed  CAS  Google Scholar 

  • Gaston, S. (1971). The influence of the pineal organ on the circadian activity rhythm in birds. In M. Menaker (Ed.), Biochronometry (pp. 541–548). Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Gaston, S., & Menaker, M. (1968). Pineal function: The biological clock in the sparrow? Science, 160, 1125–1127.

    PubMed  CAS  Google Scholar 

  • Gern, W. A., & Greenhouse, S. S. (1988). Examination of in vitro melatonin secretion from superfused trout (Salmo gairdneri) pineal organs maintained under diel illumination or continuous darkness. General and Comparative Endocrinology, 71, 163–174.

    PubMed  CAS  Google Scholar 

  • Grace, M. S., & Besharse, J. C. (1993). Solubilization and biochemical characterization of the melatonin deacetylase from Xenopus laevis retina. Journal of Neurochemistry, 60, 990–999.

    PubMed  CAS  Google Scholar 

  • Grace, M. S., Cahill, G. M., & Besharse, J. C. (1991). Melatonin deacetylation: Retinal vertebrate class distribution and Xenopus laevis tissue distribution. Brain Research, 559, 56–63.

    PubMed  CAS  Google Scholar 

  • Grace, M. S., Alones, V., Menaker, M., & Foster, R. G. (1996). Light perception in the vertebrate brain: An ultrastructural analysis of opsin-and vasoactive intestinal polypeptide-immunoreactive neurons in iguanid lizards. Journal of Comparative Neurology, 367, 575–594.

    PubMed  CAS  Google Scholar 

  • Green, C. B., Cahill, G. M., & Besharse, J. C. (1995). Regulation of tryptophan hydroxylase expression by a retinal circadian oscillator in vitro. Brain Research, 677, 283–290.

    PubMed  CAS  Google Scholar 

  • Gwinner, E. (1978). Effects of pinealectomy on circadian locomotor activity rhythms in European starlings, Sturnus vulgaris. Journal of Comparative Physiology, 126, 123–129.

    Google Scholar 

  • Gwinner, E., & Benzinger, I. (1978). Synchronization of a circadian rhythm in pinealectomized European starlings by daily injections of melatonin. Journal of Comparative Physiology, 127, 209–213.

    CAS  Google Scholar 

  • Hamasaki, D. I., Sc Eder, D. J. (1977). Adaptive radiation of the pineal system. In F. Crescitelli (Ed.), Handbook of sensory physiology (pp. 497–548). New York: Springer-Verlag.

    Google Scholar 

  • Hartwig, H. G., & van Veen, T. (1979). Spectral characteristics of visible radiation penetrating into the brain and stimulating extraretinal photoreceptors. Journal of Comparative Physiology, 130, 277–282.

    Google Scholar 

  • Hasegawa, M., Adachi, A., Yoshimura, T., & Ebihara, S. (1994). Retinally perceived light is not essential for photic regulation of pineal melatonin rhythms in the pigeon: Studies with microdialysis. Journal of Comparative Physiology A, 175, 581–586.

    CAS  Google Scholar 

  • Heigl, S., & Gwinner, E. (1994). Periodic melatonin in the drinking water synchronizes circadian rhythms in sparrows. Naturwissenschaften, 81, 83–85.

    CAS  Google Scholar 

  • Heigl, S., & Gwinner, E. (1995). Synchronization of circadian rhythms of house sparrows by oral melatonin: Effects of changing period. Journal of Biological Rhythms, 10, 225–233.

    PubMed  CAS  Google Scholar 

  • Hyde, L. L., & Underwood, H. (1995). Daily melatonin infusions entrain the locomotor activity of pinealectomized lizards. Physiology and Behavior, 58, 943–951.

    PubMed  CAS  Google Scholar 

  • Janik, D. S., & Menaker, M. (1990). Circadian locomotor rhythms in the desert iguana I. The role of the eyes and the pineal. Journal of Comparative Physiology A, 166, 803–810.

    CAS  Google Scholar 

  • Janik, D. S., Pickard, G. E., & Menaker, M. (1990). Circadian locomotor rhythms in the desert iguana II. Effects of electrolytic lesions to the hypothalamus. Journal of Comparative Physiology A, 166, 811–816.

    CAS  Google Scholar 

  • Janik, D. S., Dittami, J., & Gwinner, E. (1992). The effect of pinealectomy on circadian plasma melatonin levels in house sparrows and European starlings. Journal of Biological Rhythms, 7, 277–286.

    PubMed  CAS  Google Scholar 

  • Janik, D., Cassone, V. M., Pickard, G. E., & Menaker, M. (1994). Retinohypothalamic projections and immunocytochemical analysis of the suprachiasmatic region of the desert iguana Dipsosaurus dorsalis. Cell and Tissue Research, 275, 399–406.

    PubMed  CAS  Google Scholar 

  • Karasek, M. (1983). Ultrastructure of the mammalian pineal gland: Its comparative and functional aspects. In R. J. Reiter (Ed.), Pineal research reviews, (Vol. 1, pp. 1–48). New York: Liss.

    Google Scholar 

  • Kavaliers, M. (1979). Pineal involvement in the control of circadian rhythmicity in the lake chub, Couesius plumbeus. Journal of Experimental Zoology, 209, 33–40.

    Google Scholar 

  • Kavaliers, M. (1980a). Retinal and extraretinal entrainment action spectra for the activity rhythms of the lake chub, Couesius plumbeus. Behavioral and Neural Biology, 30, 56–67.

    CAS  Google Scholar 

  • Kavaliers, M. (1980b). Circadian locomotor activity rhythms of the burbot, Lota Iota: Seasonal differences in period length and the effect of pinealectomy. Journal of Comparative Physiology, 136, 215–218.

    Google Scholar 

  • Kavaliers, M. (1981). Circadian organization in white suckers Catostomus commersoni: The role of the pineal organ. Comparative Biochemistry and Physiology, 68A, 127–129.

    Google Scholar 

  • Kezuka, H., Aida, K., & Hanyu, I. (1989). Melatonin secretion from goldfish pineal gland in organ culture. General and Comparative Endocrinology, 75, 217–221.

    PubMed  CAS  Google Scholar 

  • Konishi, H., Ohta, M., & Homma, K. (1985). Important role of the eye controlling the locomotor rhythm in quail. Journal of Interdisciplinary Cycle Research, 16, 217–226.

    Google Scholar 

  • Korf, H.-W., & Moller, M. (1984). The innervation of the mammalian pineal gland with special reference to central pinealopetal projections. In R. J. Reiter (Ed.), Pineal research reviews (Vol. 2, pp. 41–86). New York: Liss.

    Google Scholar 

  • Lu, J., & Cassone, V. M. (1993a). Daily melatonin administration synchronizes circadian patterns of brain metabolism and behavior in pinealectomized house sparrows, Passer domesticus. Journal of Comparative Physiology A, 173, 775–782.

    Google Scholar 

  • Lu, J., & Cassone, V. M. (1993b). Pineal regulation of circadian rhythms of 2deoxy[14C]glucose uptake and 2 [1251] iodomelatonin binding in the visual system of the house sparrow, Passer domesticus. Journal of Comparative Physiology A, 173, 765–774.

    Google Scholar 

  • McMillan, J. P. (1972). Pinealectomy abolishes the circadian rhythm of migratory restlessness. Journal of Comparative Physiology A, 79, 105–112.

    Google Scholar 

  • McMillan, J. P., Keatts, H. C., & Menaker, M. (1975). On the role of eyes and brain photoreceptors in the sparrow: Entrainment to light cycles. Journal of Comparative Physiology, 102, 251–256.

    Google Scholar 

  • Menaker, M. (1971). Rhythms, reproduction, and photoreception.Biology of Reproduction, 4, 295–308. Menaker, M. (1985). Eyes-The second (and third) pineal glands? In D. Evered & S. Clark (Eds.), Photoperiodism, melatonin and the pineal (pp. 78–87). London: Pitman.

    Google Scholar 

  • Menaker, M., & Wisner, S. (1983). Temperature-compensated circadian clock in the pineal of Anolis. Proceedings of the National Academy of Sciences of the USA, 80, 6119–6121.

    PubMed  CAS  Google Scholar 

  • Minutini, L., Innocenti, A., Bertolucci, C., & Foà, A. (1994). Electrolytic lesions to the optic chiasm affect circadian locomotor rhythms in lizards. NeuroReport, 5, 525–527.

    PubMed  CAS  Google Scholar 

  • Minutini, L., Innocenti, A., Bertolucci, C., & Foà, A. (1995). Circadian organization in the ruin lizard Podareis sicula: The role of the suprachiasmatic nuclei of the hypothalamus. Journal of Comparative Physiology A, 176, 281–288.

    Google Scholar 

  • Molina-Borja, M. (1996). Pineal gland and circadian locomotor activity rhythm in the lacertid Gallotia galloti eisentrauti: Pinealectomy induces arrhythmicity. Biological Rhythm Research, 27, 1–11.

    Google Scholar 

  • Molina-Borja, M., Falcón, J., Urquiola, E., & Ravault, J. P. (1996). Production of melatonin by the gilthead sea bream pineal: An in vivo and in vitro study. Fish Physiology and Biochemistry, 15, 413–419.

    CAS  Google Scholar 

  • Morita, Y., Tamotsu, S., & Uchida, K. (1989). Multiplicity of electrophysiological and immunocytochemical properties in the pineal photosensory system. In R. J. Reiter & S. F. Pang (Eds.), Advances in pineal research (Vol. 3, pp. 43–48). London: Libbey.

    Google Scholar 

  • Morita, Y., Tabata, M., Uchida, K, & Samejima, M. (1992). Pineal-dependent locomotor activity of lamprey, Lampetra japonica, measured in relation to LD cycle and circadian rhythmicity. Journal of Comparative Physiology A, 171, 555–562.

    Google Scholar 

  • Moyer, R. W., Firth, B. T., & Kennaway, D. J. (1995). Effect of constant temperatures, darkness and light on the secretion of melatonin by pineal explants and retinas in the gecko Christinus marmoratus. Brain Research, 675, 345–348.

    PubMed  CAS  Google Scholar 

  • Murakami, N., Nakamura, H., Nishi, R., Marumoto, N., & Nasu, T. (1994). Comparison of circadian oscillation of melatonin release in pineal cells of house sparrow, pigeon and Japanese quail, using cell perfusion systems. Brain Research, 651, 209–214.

    PubMed  CAS  Google Scholar 

  • Norgren, R. B., & Silver, R. (1989). Retinohypothalamic projections and the suprachiasmatic nucleus in birds. Brain, Behavior and Evolution, 34, 73–83.

    Google Scholar 

  • Norgren, R. B., & Silver, R. (1990). Distribution of vasoactive intestinal peptide-like and neurophysin-like immunoreactive neurons and acetylcholinesterase staining in the ring dove hypothalamus with emphasis on the question of an avian suprachiasmatic nucleus. Cell and Tissue Research, 259, 331–339.

    PubMed  Google Scholar 

  • Ooka-Souda, S., & Kabasawa, H. (1988). Circadian rhythms in locomotor activity of the hagfish, Eptatretus burgeri III. Hypothalamus: A locus of the circadian pacemaker? Zoological Science, 5, 437–442.

    Google Scholar 

  • Ooka-Souda, S., Kadota, T., & Kabasawa, H. (1993). The preoptic nucleus: The probable location of the circadian pacemaker of the hagfish, Eptatretus burgeri. Neuroscience Letters, 164, 33–36.

    PubMed  CAS  Google Scholar 

  • Oshima, I., Yamada, H., Goto, M., Sato, K, & Ebihara, S. (1989). Pineal and retinal melatonin is involved in the control of circadian locomotor activity and body temperature rhythms in the pigeon. Journal of Comparative Physiology A, 166, 217–226.

    Google Scholar 

  • Pickard, G. E., & Tang, W.-X. (1993). Individual pineal cells exhibit a circadian rhythm in melatonin secretion. Brain Research, 627, 141–146.

    PubMed  CAS  Google Scholar 

  • Pickard, G. E., & Tang, W.-X. (1994). Pineal photoreceptors rhythmically secrete melatonin. Neuroscience Letters, 171, 109–112.

    PubMed  CAS  Google Scholar 

  • Pierce, M. E., & Besharse, J. C. (1986). Melatonin and dopamine interactions in the regulation of rhythmic photoreceptor metabolism. In P. J. O’Brien & D. C. Klein (Eds.), Pineal and retinal relationships (pp. 219–237). New York: Academic Press.

    Google Scholar 

  • Pierce, M. E., Sheshberadaran, H., Zhang, Z., Fox, L. E., Applebury, M. L., & Takahashi, J. S. (1993). Circadian regulation of iodopsin gene expression in embryonic photoreceptors in retinal cell culture. Neuron, 10, 579–584.

    PubMed  CAS  Google Scholar 

  • Ralph, C. L. (1981). Melatonin production by extra-pineal tissues. In N. Birau & W. Chloot (Eds.), Melatonin-Current status and perspectives (pp. 35–46). New York: Pergamon Press.

    Google Scholar 

  • Remé, C. E., Wirz-Justice, A., & Terman, M. (1991). The visual input stage of the mammalian circadian pacemaking system: I. Is there a clock in the mammalian eye? Journal of Biological Rhythms, 6, 5–29.

    PubMed  Google Scholar 

  • Reppert, S. M., Weaver, D. R., Cassone, V. M., Godson, C., & Kolakowski, L. F. (1995). Melatonin receptors are for the birds: Molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron, 15, 1003–1015.

    PubMed  CAS  Google Scholar 

  • Rivkees, S. A., Cassone, V. M., Weaver, D. R., & Reppert, S. M. (1989). Melatonin receptors in chick brain: Characterization and localization. Endocrinology, 125, 363–368.

    PubMed  CAS  Google Scholar 

  • Shimizu, T., Cox, K, Karten, H. J., & Britto, L. R. G. (1994). Cholera toxin mapping of retinal projections in pigeons (Columba livia), with emphasis on retinohypothalamic connections. Visual Neuroscience, 11, 441–446.

    PubMed  CAS  Google Scholar 

  • Silver, R., Witkovsky, P., Horvath, P., Alones, V., Barnstable, C. J., & Lehman, M. N. (1988). Coexpression of opsin-and VIP-like immunoreactivity in CSF-contacting neurons of the avian brain. Cell and Tissue Research, 253, 189–198.

    PubMed  CAS  Google Scholar 

  • Simpson, S. M., & Follett, B. K. (1981). Pineal and hypothalamic pacemakers: Their role in regulating circadian rhythmicity in Japanese quail. Journal of Comparative Physiology, 144, 381–389.

    Google Scholar 

  • Tabata, M. (1992). Photoreceptor organs and circadian locomotor activity in fishes. In M. A. Mi (Ed.), Rhythms in fishes (pp. 223–234). New York: Plenum Press.

    Google Scholar 

  • Takahashi, J. S., & Menaker, M. (1982). Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus. Journal of Neuroscience, 2, 815–828.

    PubMed  CAS  Google Scholar 

  • Takahashi, J. S., & Menaker, M. (1984). Multiple redundant circadian oscillators within the isolated avian pineal gland. Journal of Comparative Physiology A, 154, 435–440.

    Google Scholar 

  • Takahashi, J. S., Murakami, N., Nikaido, S. S., Pratt, B. L., & Robertson, L. M. (1989). The avian pineal, a vertebrate model system of the circadian oscillator: Cellular regulation of circadian rhythms by light, second messengers, and macromolecular synthesis. Recent Progress in Hormone Research, 45, 279–352.

    PubMed  CAS  Google Scholar 

  • Taylor, D. H., & Ferguson, D. E. (1970). Extraoptic celestial orientation in the southern cricket frog, Acris gryllus. Science, 168, 390–392.

    PubMed  CAS  Google Scholar 

  • Tosini, G., & Menaker, M. (1996). Circadian rhythms in cultured mammalian retina. Science, 272, 419–421.

    PubMed  CAS  Google Scholar 

  • Turek, F. W., McMillan, J. P., & Menaker, M. (1976). Melatonin: Effects on the circadian locomotor rhythm of sparrows. Science, 194, 1441–1443.

    PubMed  CAS  Google Scholar 

  • Underwood, H. (1973). Retinal and extraretinal photoreceptors mediate entrainment of the circadian locomotor rhythm in lizards. Journal of Comparative Physiology, 83, 187–222.

    Google Scholar 

  • Underwood, H. (1977). Circadian organization in lizards: The role of the pineal organ. Science, 195, 587–589.

    PubMed  CAS  Google Scholar 

  • Underwood, H. (1979). Melatonin affects circadian rhythmicity in lizards. Journal of Comparative Physiology, 130, 317–323.

    CAS  Google Scholar 

  • Underwood, H. (1981). Circadian organization in the lizard Sceloporus occidentalis: The effect of pinealectomy, blinding, and melatonin. Journal of Comparative Physiology, 141, 537–547.

    CAS  Google Scholar 

  • Underwood, H. (1983). Circadian organization in the lizard Anolis carolinensis: A multioscillator system. Journal of Comparative Physiology, 152, 265–274.

    Google Scholar 

  • Underwood, H. (1986). Circadian rhythms in lizards: Phase response curve for melatonin. Journal of Pineal Research, 3, 187–196.

    PubMed  CAS  Google Scholar 

  • Underwood, H. (1990). The pineal and melatonin: Regulators of circadian function in lower vertebrates. Experientia, 46, 120–128.

    PubMed  CAS  Google Scholar 

  • Underwood, H. (1994). The circadian rhythm of the thermoregulation in Japanese quail I. Role of the eyes and pineal. Journal of Comparative Physiology A, 175, 639–653.

    CAS  Google Scholar 

  • Underwood, H., & Edmonds, K. (1995). The circadian rhythm of thermoregulation in Japanese quail: III. Effects of melatonin administration. Journal of Biological Rhythms, 10, 284–298.

    PubMed  CAS  Google Scholar 

  • Underwood, H., & Groos, G. A. (1982). Vertebrate circadian rhythms: Retinal and extraretinal photo-reception. Experientia, 38, 1113–1121.

    Google Scholar 

  • Underwood, H., & Menaker, M. (1976). Extraretinal photoreception in lizards. Photochemistry and Photo-biology, 23, 227–243.

    CAS  Google Scholar 

  • Underwood, H., & Siopes, T. (1984). Circadian organization in Japanese quail. Journal of Experimental Zoology, 232, 557–566.

    PubMed  CAS  Google Scholar 

  • Underwood, H., Binkley, S., Siopes, T., & Mosher, K. (1984). Melatonin rhythms in the eyes, pineal bodies, and blood of Japanese quail (Coturnix coturnix japonica). General and Comparative Endocrinology, 56, 70–81.

    PubMed  CAS  Google Scholar 

  • Underwood, H., Barrett, R. K., & Siopes, T. (1990). The quail’s eye: A biological clock. Journal of Biological Rhythms, 5, 257–265.

    PubMed  CAS  Google Scholar 

  • Vivien-Roels, B., & Pévet, P. (1993). Melatonin: Presence and formation in invertebrates. Experientia, 49, 642–647.

    CAS  Google Scholar 

  • Vivien-Roels, B., Arendt, J., & Bradtke, J. (1979). Circadian and circannual fluctuations of pineal indoleamines (serotonin and melatonin) in Testudo hermanni Gmelin (Reptilia, chelonia). 1. Under natural conditions of photoperiod and temperature. General and Comparative Endocrinology, 37, 197–210.

    PubMed  CAS  Google Scholar 

  • Wiechmann, A. F. (1986). Melatonin: Parallels in pineal gland and retina. Experimental Eye Research, 42, 507–527.

    PubMed  CAS  Google Scholar 

  • Wiechmann, A. F. (1996). Hydroxyindole-O-methyltransferase mRNA expression in a subpopulation of photoreceptors in the chicken retina. Journal of Pineal Research, 20, 217–225.

    PubMed  CAS  Google Scholar 

  • Wiechmann, A. F., & Wirsig-Wiechmann, C. R. (1992). Asymmetric distribution of melatonin receptors in the brain of the lizard Anolis carolinensis. Brain Research, 593, 281–286.

    PubMed  CAS  Google Scholar 

  • Zachmann, A., Falcón, J., Knijff, S. C. M., Bolliet, V., & Ali, M. A. (1992). Effects of photoperiod and temperature on rhythmic melatonin secretion from the pineal organ of the white sucker (Catostomus commersoni) in vitro. General and Comparative Endocrinology, 86, 26–33.

    PubMed  CAS  Google Scholar 

  • Zawilska, J. B., & Iuvone, R M. (1992). Melatonin synthesis in chicken retina: Effect of kainic acid-induced lesions on the diurnal rhythm and D2-dopamine receptor-mediated regulation of serotonin N-acetyltransferase activity. Neuroscience Letters, 135, 71–74.

    PubMed  CAS  Google Scholar 

  • Zawilska, J. B., & Nowak, J. Z. (1992). Regulatory mechanisms in melatonin biosynthesis in retina. Neurochemistry International, 20, 23–36.

    PubMed  CAS  Google Scholar 

  • Zimmerman, N. H., & Menaker, M. (1975). Neural connections of sparrow pineal: Role in circadian control of activity. Science, 190, 477–479.

    PubMed  CAS  Google Scholar 

  • Zimmerman, N. H., & Menaker, M. (1979). The pineal gland: A pacemaker within the circadian system of the house sparrow. Proceedings of the National Academy of Sciences of the USA, 76, 999–1003.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Underwood, H. (2001). Circadian Organization in Nonmammalian Vertebrates. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1201-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5438-3

  • Online ISBN: 978-1-4615-1201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics