Skip to main content

Circadian Systems of Invertebrates

  • Chapter
Circadian Clocks

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 12))

Abstract

The study of the anatomic and physiologic organization of circadian systems of invertebrates has a long and productive history. Modern research can be traced to the work of Janet Harker in the 1950s, who initiated efforts to localize pacemakers and photoreceptors of the circadian system of the cockroach via lesion and transplantation studies. Ultimately, Harker was not successful, but the questions and approaches she pioneered set the stage for subsequent efforts to identify components of invertebrate circadian systems. These efforts have been directed toward answering several fundamental questions about the organization of the circadian system which are the focus of this review. The first of these concerns the nature of the pacemaking system that generates the timing signal. What are the anatomic loci of component oscillators, what is the significance of multioscillator organization, and how does the pacemaking system emerge in development? Second, what are the pathways and mechanisms by which inputs to the pacemaking system regulate its phase and period? Finally, what are the neural and endocrine signals by which the pacemaking system regulates the various processes under its control?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abran, D., Anctil, M., & Ali, M. A. (1994). Melatonin activity rhythms in the eyes and cerebral ganglia of Aplysia californica. General and Comparative E,,ndocrinology, 96, 215–222.

    Article  CAS  Google Scholar 

  • Arechiga, H., Cortes, J. L., Garcia, U., & Rodriguez-Sosa, L. (1985). Neuroendocrine correlates of circadian rhythmicity in crustaceans. American Zoologist, 25, 265–274.

    CAS  Google Scholar 

  • Barlow, R. B., Jr. (1983). Circadian rhythms in the Limulus visual system., journal ofNeuroscience, 3, 856–870.

    Google Scholar 

  • Barlow, R. B., Jr., Balanowski, S. J., Jr., & Brachman, M. L. (1977). Efferent optic nerve fibers mediate circadian rhythms in the Limulus eye. Science, 197, 86–89.

    Article  PubMed  Google Scholar 

  • Barlow, R. B., Jr., Kaplan, E., Renninger, G. H., & Saito, T. (1985). Efferent control of circadian rhythms in Limulus lateral eye. Neuroscience Research Supplement, 2, S65—S78.

    PubMed  Google Scholar 

  • Barrera-Mera, B. (1976). The effect of cerebroid ganglion lesions on ERG circadian rhythm in the crayfish. Physiology and Behavior, 17, 59–64.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, R. K., & Page, T. L. (1989). Effects of light on circadian pacemaker development. I. The freerunning period. Journal of Comparative Physiology, 165, 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Beiswanger, C. M., Sokolove, P. G., & Prior, D. J. (1981). Extraocular photoentrainment of the circadian locomotor rhythm of the garden slug Limax. Journal of Comparative Physiology, 216, 13–23.

    Google Scholar 

  • Block, G. D., & Davenport, P. A. (1982). Switch from nocturnal to diurnal behavior in the cloudy bubble snail Bulla gouldiana. Journal of Experimental Zoology, 244, 57–63.

    Article  Google Scholar 

  • Block, G. D., & Page, T. L. (1978). Effects of efferent activity on entrainment of the Aplysia eye. Comparative Biochemistry and Physiology A, 62, 635–638.

    Article  Google Scholar 

  • Block, G. D., & Roberts, M. H. (1981). Circadian pacemaker in the Bursatella eye: Properties of the rhythm and its effect on locomotor behavior. Journal of Comparative Physiology, 142, 403–410.

    Article  Google Scholar 

  • Block, G. D., & Wallace, S. (1982). Localization of a circadian pacemaker in the eye of a mollusk, Bulla. Science, 217, 155–157.

    Article  PubMed  CAS  Google Scholar 

  • Block, G. D., McMahon, D. G., Wallace, S., & Friesen, W. (1984). Cellular analysis of the ocular circadian pacemaker system: A model for retinal organization. Journal of Comparative Physiology, 155, 365–378.

    Article  Google Scholar 

  • Block, G. D., Roberts, M. H., & Lusska, A. E. (1986). Cellular analysis of circadian pacemaker coupling in Bulla. Journal of Biological Rhythms, 1, 199–217.

    Article  PubMed  CAS  Google Scholar 

  • Block, G. D., Khalsa, S, Michel, S., Geusz, M., & McMahon, D. (1993). Cellular basis of biological timekeeping. International Review of Cytology, 146, 83–144.

    Article  PubMed  CAS  Google Scholar 

  • Brady, J. (1975). Circadian changes in central excitability the origin of behavioral rhythms in tsetse flies and other animals? Journal of Entomology, 50, 79–95.

    Google Scholar 

  • Chiba, Y., & Tomioka, K. (1987). Insect circadian activity with special reference to the localization of the pacemaker. Zoological Science, 4, 945–954.

    Google Scholar 

  • Christensen, N. D., & Lewis, R. D. (1982). The circadian locomotor rhythm of Hemideina thoracica (Orthoptera; Stenopelmatidae): The circadian clock as a population of interacting oscillators. Physiological Entomology, 7, 1–13.

    Article  Google Scholar 

  • Colwell, C. S. (1990). Light and serotonin interact in affecting the circadian system of Aplysia. Journal of Comparative Physiology A, 167, 841–845.

    Article  CAS  Google Scholar 

  • Colwell, C. S., & Page, T. L. (1990). A circadian rhythm in neural activity can be recorded from the central nervous system of the cockroach. Journal of Comparative Physiology, 166, 643–649.

    PubMed  CAS  Google Scholar 

  • Colwell, C. S., Khalsa, S. B. S., & Block, G. D. (1992a). Cellular mechanisms of entrainment. Chronobiology International, 3, 163–179.

    Article  Google Scholar 

  • Colwell, C. S., Khalsa, S. B. S., & Block, G. D. (1992b). FMRFamide modulates the action of phase shifting agents on the ocular circadian pacemakers of Aplysia and Bulla. Journal of Comparative Physiology A, 170, 211–215.

    Article  CAS  Google Scholar 

  • Corrent, G., & Eskin, A. (1982). Transmitter-like action of serotonin in phase shifting a rhythm from the Aplysia eye. American Journal of Physiology, 242, R333—R338.

    PubMed  Google Scholar 

  • Corrent, G., McAdoo, D. J., & Eskin, A. (1978). Serotonin phase shifts the circadian rhythm from the Aplysia eye. Science, 202, 977–979.

    Article  PubMed  CAS  Google Scholar 

  • Cymborowski, B. (1970). Investigations on the neurohormonal factors controlling circadian rhythm of locomotor activity in the house cricket (Acheta domesticus L.). I. The role of the brain and the subesophageal ganglion. Zoologica Poloniae, 20, 103–126.

    Google Scholar 

  • Cymborowski, B. (1973). Control of the circadian rhythm of locomotor activity in the house cricket. Journal of Insect Physiology, 19, 1423–1440.

    Article  Google Scholar 

  • Cymborowski, B. (1981). Transplantation of circadian pacemaker in the house cricket, Acheta domesticus L. Journal of Interdisciplinary Cycle Research, 12, 133–140.

    Article  Google Scholar 

  • Cymborowski, B., Muszynska-Pytel, M., Porcheron, P., & Cassier, P. (1991). Haemolymph ecdysteroid titres controlled by a circadian clock mechanism in larvae of the wax moth, Galleria mellonella. Journal of Insect Physiology, 37, 35–40.

    Article  CAS  Google Scholar 

  • Cymborowski, B., Lewis, R. D., Hong, S. F., & Saunders, D. S. (1994). Circadian locomotor activity rhythms and their entrainment to light—dark cycles continue in flies (Calliphora vicina) surgically deprived of their optic lobes. Journal of Insect Physiology, 40, 501–510.

    Article  Google Scholar 

  • Dumortier, B. (1972). Photoreception in the circadian rhythm of stridulatory activity in Ephippiger (Ins., Orthoptera): Likely existence of two photoreceptive systems. Journal of Comparative Physiology, 77, 80–112.

    Article  Google Scholar 

  • Dushay, M. S., Rosbash, M., & Hall, J. (1989). The disconnected visual system mutations in Drosophila melanogaster drastically disrupt circadian rhythms. Journal of Biological Rhythms, 4, 1–28.

    Article  PubMed  CAS  Google Scholar 

  • Engelmann, W., & Honegger, H. W. (1966). Tagesperiodische Schlüpfryhthmik liner augenlosen Droso phila melanogaster-Mutante. Naturwissenschaften, 53, 588.

    Article  PubMed  CAS  Google Scholar 

  • Eskin, A. (1971). Properties of the Aplysia visual system: In vitro entrainment of the circadian rhythm and centrifugal regulation of the eye. Zeitschrift für Vergleichende Physiologie, 74, 353–371.

    Article  Google Scholar 

  • Eskin, A. (1972). Phase shifting a circadian rhythm in the eye of Aplysia by high potassium pulses. Journal of Comparative Physiology, 80, 353–376.

    Article  Google Scholar 

  • Eskin, A. (1977). Neurophysiological mechanisms involved in photo entrainment of the circadian rhythm from the Aplysia eye. Journal of Neurobiology, 8, 273–299.

    Article  PubMed  CAS  Google Scholar 

  • Eskin, A., & Harcombe, E. (1977). Eye of Navanax. Optic activity, circadian rhythm and morphology. Comparative Biochemistry and Physiology, 57A, 443–449.

    Google Scholar 

  • Eskin, A., Takahashi, J., Zatz, M., & Block, G. D. (1984). Cyclic GMP mimics the effects of light on a circadian pacemaker in the eye of Aplysia. Journal of Neuroscience, 4, 2466–2471.

    PubMed  CAS  Google Scholar 

  • Ewer, J., Frisch, B., Hamblen-Coyle, M. J., Rosbash, M., & Hall, J. (1992). Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells’ influence on circadian behavioral rhythms. Journal of Neuroscience, 12, 3321–3349.

    PubMed  CAS  Google Scholar 

  • Ferrell, B. R., & Reitcheck, B. G. (1993). Circadian changes in cockroach ommatidial structure. Journal of Comparative Physiology, 173, 549–556.

    PubMed  CAS  Google Scholar 

  • Fleissner, G. (1977a). Entrainment of the scorpion’s circadian rhythm via the median eyes. Journal of Comparative Physiology, 118, 93–99.

    Article  Google Scholar 

  • Fleissner, G. (1977b). Scorpion lateral eyes: Extremely sensitive receptors of zeitgeber stimuli. Journal of Comparative Physiology, 118, 101–108.

    Article  Google Scholar 

  • Fleissner, G. (1982). Isolation of an insect circadian clock. Journal of Comparative Physiology, 149, 311–316.

    Article  Google Scholar 

  • Fleissner, G. (1983). Efferent neurosecretory fibres as pathways for circadian clock signals in the scorpion. Naturwissenschaften, 70, S366.

    Article  Google Scholar 

  • Fleissner, G. (1986). Die innere Uhr and der Lichtsinn von Skorpionen and Kafern. Naturwissenschaften, 73, 78–88.

    Article  Google Scholar 

  • Fleissner, G., & Fleissner, G. (1985). Neurobiology of a circadian clock in the visual system of scorpions. In F. G. Barth (Ed.), Neurobiology of arachnids (pp. 251–375). Berlin: Springer-Verlag.

    Google Scholar 

  • Fleissner, G., Fleissner, G., & Frisch, B. (1993). A new type of putative non-visual photoreceptor in the optic lobe of beetles. Cell Tissue Research, 273, 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Foster, R. G., Provencio, I., Hudson, D., Fiske, S., De Grip, W., & Menaker, M. (1991). Circadian photo reception in the retinally degenerate mouse (rd/rd). Journal of Comparative Physiology, 169, 39–50.

    PubMed  CAS  Google Scholar 

  • Frank, K. D., & Zimmerman, W. E (1969). Action spectra for phase shifts of a circadian rhythm in Drosophila. Science, 163, 688–689.

    Article  PubMed  CAS  Google Scholar 

  • Fuentes-Pardo, B., & Inclan-Rubio, V. (1987). Caudal photoreceptors synchronize the circadian rhythms in crayfish-I. Synchronization or the ERG and locomotor circadian rhythms. Comparative Biochemistry and Physiology, 86A, 523–527.

    Google Scholar 

  • Fujishita, M., & Ishizaki, H. (1981). Circadian clock and prothoracicotropic hormone secretion in relation to the larval-larval ecdysis rhythm of the saturnid Samia cynthia ricini. Journal of Insect Physiology, 27, 122–128.

    Article  Google Scholar 

  • Geusz, M. E., & Block, G. D. (1992). The retinal cells generating the circadian small spikes in the Bulla optic nerve. Journal of Biological Rhythms, 7, 255–268.

    Article  PubMed  CAS  Google Scholar 

  • Geusz, M. E., & Page, T. L. (1990). The circadian rhythm and photosensitivity of small impulses of the Bulla eye. Journal of Comparative Physiology, 166, 795–801.

    PubMed  CAS  Google Scholar 

  • Geusz, M. E., & Page, T. L. (1991). An opsin-based photopigment mediates phase shifts of the Bulla circadian pacemaker. Journal of Comparative Physiology A, 168, 565–570.

    Article  CAS  Google Scholar 

  • Geusz, M. E., Foster, R. G., Lawrence, M. D., Sc Block, G. D. (1991). Opsin-like immunoreactivity in the putative pacemaker neurons in the Bulla eye. Society for Neuroscience Abstracts, 17, 1240–1241.

    Google Scholar 

  • Giebultowicz, J. M., Bell, R. A., & Imberski, R. B. (1988). Circadian rhythm of sperm movement in the male reproductive tract of the gypsy moth Lymantria dispar. Journal of Insect Physiology, 34, 527–532.

    Article  Google Scholar 

  • Giebultowicz, J. M., Riemann, J. G., Raina, A. K, & Ridgway, R. L. (1989). Circadian system controlling release of sperm in the insect testes. Science, 245, 1098–1100.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, W. H., Larimer, J. L., & Page, T. L. (1977). Circumesophageal interneurons required for reflexive and circadian locomotor behaviors in the crayfish. Journal of Comparative Physiology A, 116, 227–238.

    Article  Google Scholar 

  • Handler, A. M., & Konopka, R. J. (1979). Transplantation of a circadian pacemaker in Drosophila. Nature, 279, 236–238.

    Article  PubMed  CAS  Google Scholar 

  • Hanna, W. J. B., Horne, J. A., Sc Renninger, G. H. (1988). Circadian photoreceptor organs in Limulus. Journal of Comparative Physiology A, 162, 133–140.

    Article  Google Scholar 

  • Helfrich, C. (1986). Role of the optic lobes in the regulation of the locomotor activity rhythm of Drosophila melanogaster. Behavioral analysis of neural mutants. Journal of Neurogenetics, 3, 321–343.

    Article  PubMed  CAS  Google Scholar 

  • Helfrich, C., & Engelmann, W. (1983). Circadian locomotor activity in Drosophila melanogaster mutants “sine oculis” and “small optic lobes.” Physiological Entomology, 8, 257–272.

    Article  Google Scholar 

  • Helfrich, C., Cymborowski, B., & Engelmann, W. (1985). Circadian activity rhythm of the house fly continues after optic tract severance and lobectomy. Chronobiology International, 2, 19–32.

    Article  PubMed  CAS  Google Scholar 

  • Helfrich-Forster, C. (1995). The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells with the brain of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 92, 612–616.

    Article  PubMed  CAS  Google Scholar 

  • Helfrich-Forster, C., & Homberg, U. (1993). Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhythmicity. Journal of Comparative Neurology, 337, 177–190.

    Article  PubMed  CAS  Google Scholar 

  • Homberg, U., Wurden, S., Dircksen, H., & Rao, K. R. (1991). Comparative anatomy of pigment-dispersing hormone immunoreactive neurons in the brain of orthopteroid insects. Cell Tissue Research, 266, 343–357.

    Article  Google Scholar 

  • Horne, J. A., & Renninger, G. H. (1988). Circadian photoreceptor organs in Limulus. Journal of Comparative Physiology A, 162, 127–132.

    Article  Google Scholar 

  • Huber, E (1965). Neural integration. In M. Rockstein (Ed.), The physiology ofInsecta (Vol. 2, pp. 333–406). New York: Academic Press.

    Google Scholar 

  • Hudson, D., & Lickey, M. (1980). Internal desynchronization between two identified circadian oscillators in Aplysia. Brain Research, 183, 481–485.

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki, H., Mizoguchi, A., & Fujishita, M. (1984). Circadian clock control of hormone secretion in Sarnia Cynthia ricini. In R. Porter & G. Collins (Eds.), Photoperiodic regulation of insect and molluscan hormones (pp. 136–145). London: Pitman.

    Google Scholar 

  • Jacklet, J. W. (1969). Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science, 164, 562–563.

    Article  PubMed  CAS  Google Scholar 

  • Jacklet, J. W. (1971). A circadian rhythm in the optic nerve impulses from an isolated eye in darkness. In M. Menaker (Ed.), Biochronometry (pp. 351–362). Washington DC: National Academy of Sciences.

    Google Scholar 

  • Jacklet, J. W. (1974). The effects of constant light and light pulses on the circadian rhythm in the eye of Aplysia. Journal of Comparative Physiology, 90, 33–45.

    Article  Google Scholar 

  • Jacklet, J. W. (1980). Light sensitivity of the rhinophores and eyes of Aplysia. Journal of Comparative Physiology A, 136, 257–262.

    Article  Google Scholar 

  • Jacklet, J. W., & Barnes, S. (1993). Photoresponsive pacemaker neurons from the dissociated retina of Aplysia. Neuroreport, 5, 209–212.

    Article  PubMed  CAS  Google Scholar 

  • Jacklet, J. W., & Colquhoun, W. (1983). Ultrastructure of photoreceptors and circadian pacemaker neurons in the eye of a gastropod, Bulla. Journal of Neurocytology, 12, 373–396.

    Article  Google Scholar 

  • Jacklet, J. W., Klose, M., & Goldberg, M. (1987). FMRF-amide-like immunoreactive efferent fibers and FMRF-amide suppression of pacemaker neurons in eyes of Bulla. Journal of Neurobiology, 18, 433–449.

    Article  PubMed  CAS  Google Scholar 

  • Jordon, W. P., Lickey, M., & Hiaasen, S. (1985). Circadian organization in Aplysia: Internal desynchronize tion and amplitude of locomotor rhythm. Journal of Comparative Physiology, 156, 293–303.

    Article  Google Scholar 

  • Kasai, M., & Chiba, Y. (1987). Effects of optic lobe ablation on circadian activity in the mosquito, Culex pipiens pollens. Physiological Entomology, 12, 59–65.

    Article  Google Scholar 

  • Kass, L., & Barlow, R. B., Jr. (1984). Efferent neurotransmission of circadian rhythms in Limulus lateral eye. Journal of Neuroscience, 4, 908–917.

    PubMed  CAS  Google Scholar 

  • Kass, L., & Barlow, R. B., Jr. (1992). A circadian clock in the Limulus brain transmits synchronous efferent signals to all eyes. Visual Neuroscience, 9, 493–504.

    Article  PubMed  CAS  Google Scholar 

  • Kavaliers, M. (1981). Circadian and ultradian activity rhythms of a freshwater gastropod, Helisoma trivolvis The effects of social factors and eye removal. Behavioral and Neural Biology, 32, 350–363.

    Article  PubMed  CAS  Google Scholar 

  • Khalsa, S. B. S., & Block, G. D. (1988). Calcium channels mediate phase shifts of the Bulla circadian pacemaker. Journal of Comparative Physiology, 164, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Khalsa, S. B. S., & Block, G. D. (1990). Calcium in phase control of the Bulla circadian pacemaker. Brain Research, 506, 40–45.

    Article  PubMed  CAS  Google Scholar 

  • Klemm, E., & Ninnemann, H. (1976). Detailed action spectrum for the delay shift in pupae emergence of Drosophila pseudoobscura. Photochemistry and Photobiology, 24, 369–371.

    Article  Google Scholar 

  • Koehler, W. K., & Fleissner, G. (1978). Internal desynchronization of bilaterally organized circadian oscillators in the visual system of insects. Nature, 274, 708–710.

    Article  PubMed  CAS  Google Scholar 

  • Koumenis, C., & Eskin, A. (1992). The hunt for mechanisms of circadian timing in the eye of Aplysia. Chronobiology International, 9, 201–221.

    Article  PubMed  CAS  Google Scholar 

  • Larimer, J., & Smith, J. T. F. (1980). Circadian rhythm of retinal sensitivity in crayfish: Modulation by the cerebral and optic ganglia. Journal of Comparative Physiology, 136, 313–326.

    Article  Google Scholar 

  • Lickey, M., & Wozniak, J. (1979). Circadian organization in Aplysia explored with red light, eye removal, and behavioral recording. Journal of Comparative Physiology, 131, 169–177.

    Article  Google Scholar 

  • Lickey, M. E., Block, G. D., Hudson, D. J., & Smith, J. T. (1976). Circadian oscillators and photoreceptors in the gastropod, Aplysia. Photochemistry and Photobiology, 23, 253–273.

    Article  CAS  Google Scholar 

  • Lickey, M., Wozniak, J., Block, G., Hudson, D., & Augter, G. (1977). The consequences of eye removal for the circadian rhythm of behavioral activity in Aplysia. Journal of Comparative Physiology, 118, 121–143.

    Article  Google Scholar 

  • Lickey, M., Hudson, D., & Hiaasen, S. (1983). Circadian organization in Aplysia: Relations between locomotor rhythm and eye rhythms after cutting both, one, or neither optic nerves. Journal of Comparative Physiology, 153, 133–143.

    Article  Google Scholar 

  • Linn, C. E., Poole, K. R., Wen-Q, W., & Roelofs, W. L. (1995). Circadian changes in melatonin in the nervous system and hemolymph of the cabbage looper moth, Tricoplusia ni. Journal of Comparative Physiology, 176, 761–771.

    CAS  Google Scholar 

  • Loher, W. (1972). Circadian control of stridulation in the cricket, Teleogryllus commodus Walker. Journal of Comparative Physiology, 79, 173–190.

    Article  Google Scholar 

  • Lober, W. (1974). Circadian control of spermatophore formation in the cricket Teleogryllus commodus Walker. Journal of Insect Physiology, 20, 1155–1172.

    Article  Google Scholar 

  • Loher, W., & Chandrashekaran, M. K. (1970). Circadian rhythmicity in the oviposition of the grasshopper Chorthippus curtipennis. Journal of Insect Physiology, 16, 1677–1688.

    Article  PubMed  CAS  Google Scholar 

  • Lukat, R. (1978). Circadian growth layers in the cuticle of behaviorally arrhythmic cockroaches (Blaberus fuscus, Ins., Blattoidea). Experientia, 34, 477.

    Article  Google Scholar 

  • Lukat, R., & Weber, F. (1979). The structure of locomotor activity in bilobectomized cockroaches (Blaberus fuscus). Experientia, 35, 38–39.

    Article  Google Scholar 

  • McMahon, D. G., & Block, G. D. (1987a). The Bulla ocular circadian pacemaker I: Pacemaker neuron membrane potential controls phase through a calcium dependent mechanism. Journal of Comparative Physiology, 161, 35–346.

    Google Scholar 

  • McMahon, D. G., & Block, G. D. (1987b). The Bulla ocular circadian pacemaker II: Pacemaker membrane potential regulates the freerunning period of the oscillator. Journal of Comparative Physiology, 161, 347–354.

    Article  CAS  Google Scholar 

  • Michel, S., Geusz, M. E., Zaritsky, J. J., & Block, G. D. (1993). Circadian rhythm in membrane conductance expressed in isolated neurons. Science, 259, 239–241.

    Article  PubMed  CAS  Google Scholar 

  • Minis, D. H., & Pittendrigh, C. S. (1968). Circadian oscillation egg hatching: Its ontogeny during embryogenesis of a moth. Science, 159, 534–536.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi, A., & Ishizaki, H. (1982). Prothoracic glands of the saturniid moth Sarnia cynthia ricini possess a circadian clock controlling gut purge timing. Proceedings of the National Academy Sciences of the USA, 79, 2726–2730.

    Article  CAS  Google Scholar 

  • Mizoguchi, A., & Ishizaki, H. (1984a). Circadian clock controlling gut-purge rhythm of the saturniid Sarnia cynthia ricini: Its characterization and entrainment mechanism. Journal of Comparative Physiology A, 155, 639–647.

    Article  Google Scholar 

  • Mizoguchi, A., & Ishizaki, H. (1984b). Further evidence for the presence of a circadian clock in the prothoracic glands of the saturnid moth Sarnia cynthia ricini: Decapitated larvae can respond to light-changes. Development, Growth and Differentiation, 26, 607–611.

    Article  Google Scholar 

  • Mote, M. I., & Black, K. R. (1981). Action spectrum and threshold sensitivity of entrainment of circadian running activity in the cockroach Periplaneta americana. Photochemistry and Photobiology, 34, 257–265.

    Google Scholar 

  • Mote, M. I., & Goldsmith, T. H. (1970). Spectral sensitivities of color receptors in the compound eye of Periplaneta americana. Journal of Experimental Zoology, 173, 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Nadakavukaran, J., Lickey, M., & Jordon, W. (1986). Regulation of the circadian clock in the Aplysia eye. Journal of Neuroscience, 6, 14–21.

    Google Scholar 

  • Nelson, D. E., & Takahashi, J. S. (1991). Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). Journal of Physiology, 439, 115–145.

    PubMed  CAS  Google Scholar 

  • Nishiitsutsuji-Uwo, J., Sc Pittendrigh, C. S. (1968a). Central nervous system control of circadian rhythmicity in the cockroach. II. The pathway of light signals that entrain the rhythms. Zeitschrift gür Vergleichende Physiologie, 58, 1–13.

    Article  Google Scholar 

  • Nishiitsutsuji-Uwo, J., & Pittendrigh, C. S. (1968b). Central nervous system control of circadian rhythmicity in the cockroach. III. The optic lobes, locus of the driving oscillation? Zeitschriftfür Vergleichende Physiologie, 58, 14–46.

    Article  Google Scholar 

  • Nishiitsutsuji-Uwo, J., Petropulos, S. F., & Pittendrigh, C. S. (1967). Central nervous system control of circadian rhythmicity in the cockroach. I. Role of the pars intercerebralis. Biological Bulletin, 133, 679–696.

    Article  Google Scholar 

  • Page, T. L. (1978). Interactions between bilaterally paired components of the cockroach circadian system. Journal of Comparative Physiology, 124, 225–236.

    Article  Google Scholar 

  • Page, T. L. (1981a). Effects of localized low-temperature pulses on the cockroach circadian pacemaker. American Journal of Physiology, 240, R144–R150.

    CAS  Google Scholar 

  • Page, T. L. (1981b). Neural and endocrine control of circadian rhythmicity in invertebrates. In J. Aschoff (Ed.), Handbook of behavioral neurobiology. Vol. 4. Biological rhythms (pp. 145–172). New York: Plenum Press.

    Google Scholar 

  • Page, T. L. (1982a). Extraretinal photoreception in entrainment and photoperiodism in invertebrates. Experientia, 38, 1007–1013.

    Article  Google Scholar 

  • Page, T. L. (1982b). Transplantation of the cockroach circadian pacemaker. Science, 216, 73–75.

    Article  CAS  Google Scholar 

  • Page, T. L. (1983a). Regeneration of the optic tracts and circadian pacemaker activity in the cockroach Leucophaea maderae. Journal of Comparative Physiology, 152, 231–240.

    Article  Google Scholar 

  • Page, T. L. (1983b). Effects of optic-tract regeneration on internal coupling in the circadian system of the cockroach. Journal of Comparative Physiology, 153, 231–240.

    Google Scholar 

  • Page, T. L. (1984). Neuronal organization of a circadian clock in the cockroach Leucophaea maderae. In R. Porter & G. Collins (Eds.), Photoperiodic regulation of insect and molluscan hormones (pp. 115–135). London: Pitman.

    Google Scholar 

  • Page, T. L. (1985a). Clocks and circadian rhythms in insects. In G. Kerkut & L. Gilbert (Eds.), Comprehensive insect biochemistry, physiology, and pharmacology VI. Sensory physiology (pp. 577–652). Oxford: Pergamon Press.

    Google Scholar 

  • Page, T. L. (1985b). Circadian organization in the cockroach: Effects of temperature cycles on locomotor activity. Journal of Insect Physiology, 31, 235–242.

    Article  Google Scholar 

  • Page, T. L. (1988). Circadian organization and the representation of circadian information in the nervous systems of invertebrates. In J. M. Hekkens, G. A. Kerkhof, & W. J. Rietveld (Eds.), Trends in chronobiology (pp. 67–79). Oxford: Pergamon Press.

    Google Scholar 

  • Page, T. L. (1989). Masking in invertebrates. Chronobiology International, 6, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Page, T. L. (1990a). Circadian organization in the cockroach. In I. Huber (Ed.), Cockroaches as models for neurobiology: Applications in biomedical research (pp. 225–246). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Page, T. L. (1990b). Circadian rhythms of locomotor activity in cockroach nymphs: Freerunning and entrainment. Journal of Biological Rhythms, 5, 273–290.

    Article  CAS  Google Scholar 

  • Page, T. L. (1991). Developmental manipulation of the circadian pacemaker in the cockroach: Relation ship between pacemaker period and response to light. Physiological Entomology, 16, 243–248.

    Article  Google Scholar 

  • Page, T. L., & Barrett, R. K. (1989). Effects of light on circadian pacemaker development. II. The response to light. Journal of Comparative Physiology, 165, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Page, T. L., & Larimer, J. L. (1972). Entrainment of the circadian locomotor activity rhythm in crayfish. Journal of Comparative Physiology, 78, 107–120.

    Article  Google Scholar 

  • Page, T. L., & Larimer, J. L. (1975a). Neural control of circadian rhythmicity in the crayfish I. The locomotor activity rhythm. Journal of Comparative Physiology, 97, 59–80.

    Article  Google Scholar 

  • Page, T. L., & Larimer, J. L. (1975b). Neural control of circadian rhythmicity in the crayfish II. The ERG amplitude rhythm. Journal of Comparative Physiology, 97, 81–96.

    Article  Google Scholar 

  • Page, T. L., & Larimer, J. L. (1976). Extraretinal photoreception in entrainment of crustacean rhythms. Photochemistry and Photobiology, 23, 245–251.

    Article  CAS  Google Scholar 

  • Page, T. L., & Nalovic, K. G. (1992). Properties of mutual coupling between the two circadian pacemakers in the eyes of the mollusk Bulla gouldiana. Journal of Biological Rhythms, Z 23 213–226.

    Article  Google Scholar 

  • Page, T. L., Caldarola, P. C., & Pittendrigh, C. S. (1977). Mutual entrainment of bilaterally distributed circadian pacemakers. Proceedings of the National Academy of Sciences of the USA, 74, 1277–1281.

    Article  PubMed  CAS  Google Scholar 

  • Page, T. L., Wassmer, G., Fletcher, J., & Block, G. (1997). Aftereffects of entrainment on the period of the pacemaker in the eye of the mollusk Bulla gouldiana. Journal of Biological Rhythms, 12, 218–225.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S. (1976). Circadian clocks: What are they? In J. W. Hastings & H. Schweiger (Eds.), Molecular basis of circadian rhythms (pp. 11–48). Berlin: Dahlem Konferenzen.

    Google Scholar 

  • Pittendrigh, C. S. (1981). Circadian organization and the photoperiodic phenomena. In B. K. Follett & D. E. Follett (Eds.), Biological clocks in seasonal reproductive cycles (pp. 1–35). Bristol, England: Wright.

    Google Scholar 

  • Pollard, T. G., & Larimer, J. L. (1977). Circadian rhythmicity of heart rate in the crayfish, Procambarus clarkii. Journal of Comparative Physiology, 57, 221–226.

    Google Scholar 

  • Raju, U., Yeung, S., & Eskin, A. (1990). Involvement of proteins in light resetting ocular circadian oscillators of Aplysia. American Journal of Physiology, 258, R256–R262.

    PubMed  CAS  Google Scholar 

  • Raju, U., Nunez-Regueiro, M., Cook, R., & Eskin, A. (1993). Identification of an annexin-like protein and its possible role in the Aplysia eye circadian system. Journal of Neurochemistry, 61, 1236–1245.

    Article  PubMed  CAS  Google Scholar 

  • Rence, B., & Loher, W. (1975). Arrhythmically singing crickets: Thermoperiodic reentrainment after bilobectomy. Science, 190, 385–387.

    Article  PubMed  CAS  Google Scholar 

  • Riemann, J. G., Thorson, B. J., & Rudd, R. L. (1974). Daily cycle of release of sperm from the testes of the Mediterranean flour moth. Journal of Insect Physiology, 20, 195–207.

    Article  Google Scholar 

  • Roberts, M. H., & Block, G. D. (1987). Analysis of mutual circadian pacemaker coupling between the two eyes of Bulla. Journal of Biological Rhythms, 15, 55–75.

    Google Scholar 

  • Roberts, M. H., & Moore, R. (1987). Localization of neuropeptides in efferent terminals in the eye in the marine snail, Bulla. Cell Tissue Research, 248, 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, M. H., Block, G. D., & Lusska, A. E. (1987). Comparative studies of circadian pacemaker coupling in opisthobranch mollusks. Brain Research, 423, 286–292.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, S. K. (1962). Circadian activity in cockroaches. II. Entrainment and phase-shifting. Journal of Cellular and Comparative Physiology, 59, 175–186.

    Article  Google Scholar 

  • Roberts, S. K. (1965). Photoreception and entrainment of cockroach activity rhythms. Science, 148, 958–959.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, S. K. (1966). Circadian activity rhythms in cockroaches. III. The role of endocrine and neural factors. Journal of Cellular and Comparative Physiology, 67, 473–486.

    CAS  Google Scholar 

  • Roberts, S. K. (1974). Circadian rhythms in cockroaches: Effects of optic lobe lesions. Journal of Comparative Physiology, 88, 21–30.

    Article  Google Scholar 

  • Roberts, S. K, Skopik, S. D., & Driskill, R. J. (1971). Circadian rhythms in cockroaches: Does brain hormone mediate the locomotor cycle? In M. Menaker (Ed.), Biochronometry (pp. 505–515). Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Sanchez, J. A., & Fuentes-Pardo, B. (1977). Circadian rhythm of the amplitude of the electroretinogram in the isolated eyestalk of the crayfish. Comparative Biochemistry and Physiology, 56, 601–605.

    Article  Google Scholar 

  • Sandeman, D. C., Sandeman, R. E., & de Couet, H. G. (1990). Extraretinal photoreceptors in the brain of the crayfish Cherax destructor. Journal of Neurobiology, 21, 619–629.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, M., Yamazaki, S., & Chiba, K. (1987). Brain photoreception in the calling rhythm of a noctuid moth, Anadevidia peponiv Method of making eyeless moth and micro-irradiation of brain with fiber optics. Bulletin of the Faculty of Agriculture, 27, 81–90.

    Google Scholar 

  • Schulz, W., Schluter, U., & Seifert, G. (1984). Extraocular photoreceptors in the brain of Epilachna varivestis (Coleoptera, Coccinellidae). Cell Tissue Research, 236, 317–320.

    PubMed  CAS  Google Scholar 

  • Sehgal, A., Price, J., & Young, M. W. (1992). Ontogeny of a biological clock in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 89, 1423–1427.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, L, & Matsui, K. (1983). Photoreceptions in the eclosion of the silkworm Bombyx mori. Photochemistry and Photobiology, 37, 409–413.

    Article  Google Scholar 

  • Sokolove, P. G. (1975). Localization of the cockroach optic lobe circadian pacemaker with microlesions. Brain Research, 87, 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Sokolove, P. G., & Loher, W. (1975). Role of eyes, optic lobes, and pars intercerebralis in locomotory and stridulatory circadian rhythms of Teleogryllus commodus. Journal of Insect Physiology, 21, 785–799.

    Article  PubMed  CAS  Google Scholar 

  • Steel, G. H., & Ampleford, E. J. (1984). Circadian control of haemolymph ecdysteroid titres and the ecdysis rhythm in Rhodnius prolixus. In R. Porter & G. Collins (Eds.), Photoperiodic regulation of insect and molluscan hormones (pp. 150–163). London: Pitman.

    Google Scholar 

  • Stengl, M. (1995). Pigment-dispersing hormone-immunoreactive fibers persist in crickets which remain rhythmic after bilateral transection of the optic stalks. Journal of Comparative Physiology, 176, 217–228.

    Google Scholar 

  • Stengl, M., & Homberg, U. (1994). Pigment-dispersing hormone immunoreactive neurons in the cockroach Leucophaea maderae share properties with circadian pacemaker neurons. Journal of Comparative Physiology, 175, 203–213.

    Article  PubMed  CAS  Google Scholar 

  • Strumwasser, F. (1973). Neural and humoral factors in the temporal organization of behavior. Physiologist, 16, 9–42.

    PubMed  CAS  Google Scholar 

  • Takahashi, J. S., Nelson, D., & Eskin, A. (1989). Immunocytochemical localization of serotonergic fibers innervating the ocular circadian system of Aplysia. Neuroscience, 28, 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Thorson, B. J., & Riemann, J. G. (1977). Abdominally entrained periodicities of testis and vas deferens activity in the Mediterranean flour moth. Journal of Insect Physiology, 23, 1189–1197.

    Article  Google Scholar 

  • Tomioka, K. (1985). Residual circadian rhythmicity after bilateral lamina-medulla removal or optic stalk transection in the cricket Gryllus bimaculatus. Journal of Insect Physiology, 31, 653–657.

    Article  Google Scholar 

  • Tomioka, K, & Chiba, Y. (1982). Persistence of circadian ERG rhythm in the cricket with optic tract severed. Naturwissenschaften, 69, 395–396.

    Article  Google Scholar 

  • Tomioka, K, & Chiba, Y. (1984). Effects of nymphal stage optic nerve severance or optic lobe removal on the circadian locomotor rhythm of the cricket, Gryllus bimaculatus. Zoological Science, 1, 375–382.

    Google Scholar 

  • Tomioka, K, & Chiba, Y. (1986). Circadian rhythm in the neurally isolated lamina-medulla complex of the cricket Gryllus bimaculatus. Journal of Insect Physiology, 32, 747–755.

    Article  Google Scholar 

  • Tomioka, K., & Chiba, Y. (1992). Characterization of an optic lobe circadian pacemaker by in situ and in vitro recording of neural activity in the cricket, Gryllus bimaculatus. Journal of Comparative Physiology, 171, 1–8.

    Google Scholar 

  • Tomioka, K, Okada, Y., & Chiba, Y. (1990). Distribution of circadian photoreceptors in the compound eye of the cricket Gryllus bimaculatus. Journal of Biological Rhythms, 5, 303–314.

    Article  PubMed  CAS  Google Scholar 

  • Tomioka, K, Yamada, K., Yokoyama, S., & Chiba, Y. (1991). Mutual interactions between optic lobe circadian pacemakers in the cricket Gryllus bimaculatus. Journal of Comparative Physiology, 169, 291–298.

    Google Scholar 

  • Tomioka, K., Nakamichi, Y., &Yukizane, M. (1994). Optic lobe circadian pacemaker sends its information to the contralateral optic lobe in the cricket Gryllus bimaculatus. Journal of Comparative Physiology, 175, 381–388.

    Google Scholar 

  • Truman, J. W. (1971a). Circadian rhythms and physiology with special reference to neuroendocrine processes in insects. In Proceedings of the International Symposium on Circadian Rhythmicity (pp. 111–135). Wageningen, Netherlands: Pudoc Press.

    Google Scholar 

  • Truman, J. W. (1971b). Physiology of insect ecdysis. I. The eclosion behavior of silkmoths and its hormonal control. Journal of Experimental Biology, 54, 805–814.

    Google Scholar 

  • Truman, J. W. (1972a). Physiology of insect rhythms. I. Circadian organization of the endocrine events underlying the moulting cycle of larval tobacco hornworms. Journal of Experimental Biology, 57, 805–820.

    CAS  Google Scholar 

  • Truman, J. W. (1972b). Physiology of insect rhythms. II. The silk moth brain as the location of the biological clock controlling eclosion. Journal of Comparative Physiology, 81, 99–114.

    Article  Google Scholar 

  • Truman, J. W. (1973). Physiology of insect ecdysis. II. The assay and occurrence of the eclosion hormone in the Chinese oak silkmoth, Antheraea pernyi. Biological Bulletin, 114, 200–211.

    Article  Google Scholar 

  • Truman, J. W. (1974a). Circadian release of a prepatterned neural program in silkmoths. In F. O. Schmitt & F. G. Worden (Eds.), The neurosciences: Third study program (pp. 525–529). Cambridge, MA: MIT Press.

    Google Scholar 

  • Truman, J. W. (1974b). Physiology of insect rhythms. IV. Role of the brain in the regulation of the flight rhythm of the giant silkmoths. Journal of Comparative Physiology, 95, 281–296.

    Article  Google Scholar 

  • Truman, J. W. (1976). Extraretinal photoreception in insects. Photochemistry and Photobiology, 23, 215–225.

    Article  CAS  Google Scholar 

  • Truman, J. W. (1984a). Physiological aspects of the two oscillators that regulate timing of eclosion in moths. In R. Porter & G. Collins (Eds.), Photoperiodic regulation of insect and molluscan hormones (pp.

    Google Scholar 

  • Truman, J. W. (1984b). The preparatory behavior rhythms of the moth Manduca sexta: An ecdysteroid triggered circadian rhythm that is independent of the brain. Journal of Comparative Physiology, 155, 521–528.

    Article  Google Scholar 

  • Truman, J. W., & Riddiford, L. M. (1970). Neuroendocrine control of ecdysis in silkmoths. Science, 167, 1624–1626.

    Article  PubMed  CAS  Google Scholar 

  • Truman, J. W., & Sokolove, P. J. (1972). Silkmoth eclosion: Hormonal triggering of a centrally programmed pattern of behavior. Science, 175, 1491–1493.

    Article  PubMed  CAS  Google Scholar 

  • Vafopoulou, X., & Steel, C. G. H. (1991). Circadian regulation of synthesis of ecdysteroids by prothoracic glands of the insect Rhodnius prolixus Evidence of a dual oscillator system. General and Comparative Endocrinology, 83, 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Vafopoulou, X., & Steel, C. G. H. (1992). In vitro photosensitivity of ecdysteroid synthesis by prothoracic glands of Rhodnius prolixus. General and Comparative Endocrinology, 86, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Waddel, B., Lewis, R. D., & Engelmann, W. (1990). Localization of the circadian pacemakers of Hemideina thoracica (Orthoptera; Stenopelmatidae). Journal of Biological Rhythms, 5, 131–140.

    Article  Google Scholar 

  • Weber, E (1985). Postmolt cuticle growth in a cockroach: In vitro deposition of multilamellate and circadian-like layered endocuticle. Experientia, 41, 398–400.

    Article  Google Scholar 

  • Wiedenmann, G. (1983). Splitting in a circadian activity rhythm: The expression of bilaterally paired oscillators. Journal of Comparative Physiology, 150, 51–60.

    Article  Google Scholar 

  • Wiedenmann, G., & Loher, W. (1984). Circadian control of singing in crickets: Two different pacemakers for early-evening and before-dawn activity. Journal of Insect Physiology, 30, 145–151.

    Article  Google Scholar 

  • Wiedenmann, G., Lukat, R., & Weber, E (1986). Cyclic layer deposition in the cockroach endocuticle: A circadian rhythm? Journal of Insect Physiology, 32, 1019–1027.

    Article  Google Scholar 

  • Wills, S. A., Page, T. L., & Colwell, C. (1985). Circadian rhythms in the electroretinogram of the cockroach. Journal of Biological Rhythms, 1, 25–37.

    Article  PubMed  CAS  Google Scholar 

  • Woolum, J., & Strumwasser, E (1980). The differential effects of ionizing radiation on the circadian oscillator and other functions in the eye of Aplysia. Proceedings of the National Academy of Sciences of the USA, 77, 5542–5546.

    Article  PubMed  CAS  Google Scholar 

  • Yukizane, M., & Tomioka, K. (1995). Neural pathways involved in mutual interactions between optic lobe circadian pacemakers in the cricket Gryllus bimaculatus. Journal of Comparative Physiology, 176, 601–610.

    Article  Google Scholar 

  • Zimmerman, W. E, & Goldsmith, T. H. (1971). Photosensitivity of the circadian rhythm and of visual receptors in carotenoid depleted Drosophila. Science, 171, 1167–1168.

    Article  Google Scholar 

  • Zimmerman, W. E, & Ives, D. (1971). Some photophysical aspects of circadian rhythmicity in Drosophila. In M. Menaker (Ed.), Biochrcmometry (pp. 381–391). Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Zwicky, K. T. (1970). Behavioral aspects of the extraocular light sense of Urodacus

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Page, T.L. (2001). Circadian Systems of Invertebrates. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1201-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5438-3

  • Online ISBN: 978-1-4615-1201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics