The Entrainment of Circadian Systems

  • Serge Daan
  • Jürgen Aschoff
Part of the Handbook of Behavioral Neurobiology book series (HBNE, volume 12)


The entrainment of circadian systems is essential for their functional significance as well as for our insight into their physiologic organization. Entrainment entails the adjustment of both the frequency and phase of rhythms in the living world to the cycle of the earth’s rotation. It is only by virtue of entrainment that programs in behavior and physiology produced by endogenous circadian systems can be properly timed. This is crucial for the advantages in natural selection that in the past gave rise to the evolution and today maintain the genetic basis of these systems. Entrainment requires the sensitivity of endogenous oscillators toward particular environmental cues as well as insensitivity toward others. The sensitivity toward light has been and continues to be a primary guide in probing and unraveling the physiology of circadian systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers, H. E. (1986). Response of hamster circadian system to transitions between light and darkness. American Journal of Physiology, 250, R708–R711.PubMedGoogle Scholar
  2. Amir, S., & Stewart, J. (1996). Resetting of the circadian clock by a conditioned stimulus. Nature, 379, 542–545.PubMedCrossRefGoogle Scholar
  3. Armstrong, S. M. (1989). Melatonin and circadian control in mammals. Experientia, 45, 932.PubMedCrossRefGoogle Scholar
  4. Aschoff, J. (1960). Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symposia on Quantitative Biology, 25, 11–28.PubMedCrossRefGoogle Scholar
  5. Aschoff, J. (1979a). Circadian rhythms: General features and endocrinological aspects. In D. Krieger (Ed.), Endocrine rhythms (pp. 1–60). New York: Raven Press.Google Scholar
  6. Aschoff, J. (1979b). Circadian rhythms: Influences of internal and external factors on the period measured in constant conditions. Zeitschrii t für Tierpsychologie, 49, 225–249.Google Scholar
  7. Aschoff, J. (1981a). Circadian system properties. In F. Obal & G. Benedek (Eds.), Advances in physiological sciences-Environmental physiology (Vol.  18, pp. 1–17). Budapest: Akademiai Kiado.Google Scholar
  8. Aschoff, J. (1981b). Freerunning and entrained circadian rhythms. In J. Aschoff (Ed.), Handbook of behavioral neurobiology. Vol  4. Biological rhythms (pp. 81–93). New York: Plenum Press.Google Scholar
  9. Aschoff, J. (1994). On the aging of circadian systems. In T. Hiroshige & K. Honma (Eds.), Evolution of circadian clock (pp. 23–44). Sapporo, Japan: Hokkaido University Press.Google Scholar
  10. Aschoff, J., & Pohl, H. (1978). Phase relations between a circadian rhythm and its Zeitgeber within the range of entrainment. Naturwissenschaften, 65, 80–84.PubMedCrossRefGoogle Scholar
  11. Aschoff, J., & Tokura, H. (1986). Circadian activity rhythms in squirrel monkeys: Entrainment by temperature cycles. Journal of Biological Rhythms, 1, 91–99.PubMedCrossRefGoogle Scholar
  12. Aschoff, J., & Von Goetz, C. (1988). Masking of circadian activity rhythms in hamsters by darkness. Journal of Comparative Physiology A, 162, 559–562.CrossRefGoogle Scholar
  13. Aschoff, J., & Wever, R. (1965). Circadian rhythms of finches in light-dark cycles with interposed twilights. Comparative Biochemistry and Physiology, 16, 507–514.PubMedCrossRefGoogle Scholar
  14. Aschoff, J., Sc Wever, R. (1966). Circadian period and phase angle difference in chaffinches (Fringilla coelebs L.). Comparative Biochemistry and Physiology, 18, 397–404.PubMedCrossRefGoogle Scholar
  15. Aschoff, J., Hoffmann, K., Pohl, H., & Wever, R. (1979). Re-entrainment of circadian rhythms after phase-shifts of the zeitgeber. Chronobiologia, 2, 23–78.Google Scholar
  16. Aschoff, J., Daan, S., & Honma, K. (1982a). Zeitgebers, entrainment, and masking: Some unsettled questions. In J. Aschoff, S. Daan, & G. Groos (Eds.), Vertebrate circadian systems (pp. 13–24). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  17. Aschoff, J., Gerecke, U., Von Goetz, C., Groos, G. A., & Turek, F. W. (1982b). Phase responses and characteristics of free-running activity rhythms in the golden hamster: Independence of the pineal gland. In J. Aschoff, S. Daan, & G. Groos (Eds.), Vertebrate circadian systems (pp. 129–140). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  18. Boulos, Z., Macchi, M., Houpt, T. A., & Terman, M. (1996). Photic entrainment in hamsters: Effects of simulated twilights and nest box availability. Journal of Biological Rhythms, 11, 216–233.PubMedCrossRefGoogle Scholar
  19. Bovet, J., & Oertli, E. (1974). Free-running circadian activity rhythms in free-living beaver Castor cana densis). Journal of Comparative Physiology, 92, 1–10.CrossRefGoogle Scholar
  20. Clifton, K. E. (1997). Mass spawning by green algae on coral reefs. Science, 275, 1116–1118.PubMedCrossRefGoogle Scholar
  21. Daan, S., & Aschoff, J. (1975). Circadian rhythms of locomotor activity in captive birds and mammals: Their variations with season and latitude. Oecologia, 18, 269–316.CrossRefGoogle Scholar
  22. Daan, S., & Pittendrigh, C. S. (1976a). A functional analysis of circadian pacemakers in nocturnal rodents II. The variability of phase response curves. Journal of Comparative Physiology, 106, 253–266.CrossRefGoogle Scholar
  23. Daan, S., & Pittendrigh, C. S. (1976b). A functional analysis of circadian pacemakers in nocturnal rodents III. Heavy water and constant light: Homeostasis of frequency? Journal of Comparative Physiology, 106, 267–290.CrossRefGoogle Scholar
  24. Daan, S., Damassa, D., Pittendrigh, C., & Smith, E. (1975). An effect of castration and testosterone replacement on a circadian pacemaker in mice (Mus musculus). Proceedings of the National Academy of Sciences of the USA, 72, 3744–3747.PubMedCrossRefGoogle Scholar
  25. Davis, F., & Gorski, R. (1988). Development of hamster circadian rhythms: Role of the maternal suprachiasmatic nucleus. Journal of Comparative Physiology A, 162, 601–610.CrossRefGoogle Scholar
  26. Davis, F., & Mannion, J. (1988). Entrainment of hamster pup circadian rhythms by prenatal melatonin injections to the mother. American Journal of Physiology, 255, R439–R448.PubMedGoogle Scholar
  27. Davis, F., Suce, S., & Menaker, M. (1987). Activity and reproductive state in the hamster: Independent control by social stimuli and a circadian pacemaker. Physiology and Behavior, 40, 583–590.PubMedCrossRefGoogle Scholar
  28. DeCoursey, P. (1960). Daily light sensitivity rhythm in a rodent. Science, 131, 33–35.CrossRefGoogle Scholar
  29. DeCoursey, P. (1972). LD ratios and the entrainment of circadian activity in a nocturnal and a diurnal rodent. Journal of Comparative Physiology, 78, 221–235.CrossRefGoogle Scholar
  30. DeCoursey, P. J. (1986). Light-sampling behavior in photoentrainment of a rodent circadian rhythm. Journal of Comparative Physiology A, 159, 161–169.CrossRefGoogle Scholar
  31. DeCoursey, P. J., & Menon, S. A. (1990). Circadian photo-entrainment in a nocturnal rodent: Quantitative measurement of light-sampling activity. Animal Behaviour, 41, 781–785.CrossRefGoogle Scholar
  32. Edgar, D. M., & Dement, W. C. (1991). Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. American Journal of Physiology, 261, R928–R933.PubMedGoogle Scholar
  33. Engelmann, W., Eger, I., Johnsson, A., Sc Karlsson, H. G. (1974). Effect of temperature pulses on the petal rhythm of Kalanchoe: An experimental and theoretical study. International Journal of Chrono-biology, 2, 347–358.Google Scholar
  34. Eriksson, L., & Van Veen, T. (1980). Circadian rhythms in the brown bullhead, Ictalurus nebulosus (Teleostei). Evidence for an endogenous rhythm in feeding, locomotor, and reaction time behaviour. Canadian Journal of Zoology, 58, 1899–1907.CrossRefGoogle Scholar
  35. Eskin, A. (1971). Some properties of the system controlling the circadian activity rhythm of sparrows. In M. Menaker (Ed.), Biochronometry (pp. 55–80). Washington DC: National Academy of Sciences.Google Scholar
  36. Gander, P. H. (1979). The circadian locomotor activity rhythm of Hemideina thoracica (Orthoptera): The effects of temperature perturbations. International Journal of Chronobiology, 6, 243–262.Google Scholar
  37. Gerkema, M. P., Daan, S., Wilbrink, M., Hop, M., & Van der Leest, E (1993). Phase control of ultradian feeding rhythms in the common vole (Microtus arvalis): The roles of light and the circadian system. Journal of Biological Rhythms, 8, 151–171.PubMedCrossRefGoogle Scholar
  38. Gwinner, E. (1966). Entrainment of a circadian rhythm in birds by species-specific song cycles (Aves, Fringillidae; Carduelis spinus, Serinus serinus). Experientia, 22, 1–3.CrossRefGoogle Scholar
  39. Haarhaus, H. (1968). Zum Tagesrhythmus des Staren (Sturnus vulgaris) and der Schneeammer (Plectrophenax nivalis). Oecologia (Berlin), 1, 176–218.CrossRefGoogle Scholar
  40. Hardeland, R., Balzer, I., Poeggeler, B., Fuhrberg, B., Uria, H., Behrmann, G., Wolf, R., Meyer, T. J., & Reiter, R. J. (1995). On the primary functions of melatonin in evolution: Mediation of photo-periodic signals in a unicell, photooxidation, and scavenging of free radicals. Journal of Pineal Research, 18, 104–111.PubMedCrossRefGoogle Scholar
  41. Hayden, P., & Lindberg, R. (1969). Circadian rhythm in mammalian body temperature entrained by cyclic pressure changes. Science, 164, 1288–1289.PubMedCrossRefGoogle Scholar
  42. Heigl, S., & Gwinner, E. (1994). Periodic melatonin in the drinking water synchronizes circadian rhythms in sparrows. Naturwissenschaften, 81, 83–85.CrossRefGoogle Scholar
  43. Hoffmann, K. (1969). Zum Einfluss der Zeitgeberstaerke auf die Phasenlage der synchronisierten Periodik. Zeitschrift fiir vergleichende Physiologie, 62, 93–110.CrossRefGoogle Scholar
  44. Honma, S., Honma, K, & Hiroshige, T. (1985). Ontogeny of corticosterone and locomotor rhythms in rats: Effects of maternal rhythms and restricted daily feeding. In T. Hiroshige & K. Honma (Eds.), Circadian clocks and zeitgebers (pp. 167–178). Sapporo, Japan: Hokkaido Press.Google Scholar
  45. Hut, R. A., van Oort, B. E. H., & Daan, S. (1999). Natural entrainment without dawn and dusk: The case of the European ground squirrel (Spermophilus citellus). Journal of Biological Rhythms, 14, 290–299.PubMedCrossRefGoogle Scholar
  46. Johnson, C. H. (1991). An atlas of phase response curves for circadian and circatidal rhythms. Nashville, TN: Vanderbilt University.Google Scholar
  47. Johnson, C. H. (1992). Phase response curves: What can they tell us about circadian clocks? In T. Hiroshige & K. Honma (Eds.), Circadian clocks: From cell to human (pp. 209–249). Sapporo, Japan: Hokkaido University Press.Google Scholar
  48. Johnson, M. S. (1939). Effect of continuous light on periodic spontaneous activity of white-footed mice (Peromyscus). Journal of Experimental Zoology, 82, 315–328.CrossRefGoogle Scholar
  49. Kleinhoonte, A. (1928). De door het licht geregelde autonome bewegingen der Canavalia-bladeren. Ph.D. dissertation, Utrecht University, Utrecht, The Netherlands.Google Scholar
  50. Kleinknecht, S. (1985). Lack of social entrainment of free-running circadian activity rhythms in the Australian sugar glider (Petaurus brevicepx Marsupialia). Behavioral Ecology and Sociobiology, 16, 189–193.CrossRefGoogle Scholar
  51. Kramm, K. (1974). Phase control of circadian activity rhythms in ground squirrels. Naturwissenschaften, 61, 34.PubMedCrossRefGoogle Scholar
  52. Kr ‘till, F. (1976). Zeitgebers for animals in the continuous daylight of high arctic summer. Oecologia (Berlin), 24, 149–157.CrossRefGoogle Scholar
  53. Lewy, A. J., Sack, R. L., Bood, M. L., Bauer, V. K., Cutler, N. S., & Thomas, K. H. (1994). Melatonin marks phase position and resets the endogenous circadian pacemaker in humans. In D. J. Chadwick & K. Ackrill (Eds.), Circadian clocks and their adjustment (pp. 303–317). New York: Wiley.Google Scholar
  54. Marimuthu, G., & Chandrashekaran, M. K. (1983). Social cues of a Hipposiderid bat inside a cave fail to entrain the circadian rhythm of an Emballonurid bat. Naturwissenschaften, 70, 620.CrossRefGoogle Scholar
  55. Marimuthu, G., Rajan, S., & Chandrashekaran, M. 1981). Social entrainment of the circadian rhythm in the flight activity of the microchiropteran bat Hipposideros speoris. Behavioral Ecology and Sociobiology, 8, 147–150.CrossRefGoogle Scholar
  56. Meijer, J. H., & DeVries, M. J. (1995). Light-induced phase shifts in onset and offset of running-wheel activity in the Syrian hamster. Journal of Biological Rhythms, 10, 4–16.PubMedCrossRefGoogle Scholar
  57. Menaker, M., & Eskin, A. (1966). Entrainment of circadian rhythms by sound in Passer domesticus. Science, 154, 1579–1581.PubMedCrossRefGoogle Scholar
  58. Mrosovsky, N. (1988). Phase response curves for social entrainment. Journal of Comparative Physiology A, 162, 35–46.CrossRefGoogle Scholar
  59. Mrosovsky, N. (1993). Tau changes after single nonphotic events. Chronobiology International, 10, 271–276.PubMedCrossRefGoogle Scholar
  60. Mrosovsky, N., Boshes, M., Hallonquist, J., & Lang, K (1976). Circannual cycle of circadian cycles in a golden-mantled ground squirrel. Naturwissenschaften, 63, 298–299.PubMedCrossRefGoogle Scholar
  61. Mrosovsky, N., Reebs, S., Honrado, G., & Salmon, P. (1989). Behavioural entrainment of circadian rhythms. Experientia, 45, 696–702.PubMedCrossRefGoogle Scholar
  62. Oklejewicz, M., Hut, R. A., Daan, S., Loudon, A. S. I., & Stirland, A. J. (1997). Metabolic rate changes proportionally to circadian frequency in tau mutant Syrian hamsters. Journal of Biological Rhythms, 12, 413–422.PubMedGoogle Scholar
  63. Pittendrigh, C. (1958). Perspectives in the study of biological clocks. In A. A. Buzatti-Traverso (Ed.), Perspectives in marine biology (pp. 239–268). San Francisco: University of California Press.Google Scholar
  64. Pittendrigh, C. (1967). Circadian systems I. The driving oscillation and its assay in Drosophila pseudoobscura. Proceedings of the National Academy of Sciences of the USA, 58, 1762–1767.PubMedCrossRefGoogle Scholar
  65. Pittendrigh, C. S. (1980). Some functional aspects of circadian pacemakers. In M. Suda, O. Hayaishi, & H. Nakagawa (Eds.), Biological rhythms and their central mechanism (pp. 3–12). New York: Elsevier Press.Google Scholar
  66. Pittendrigh, C. (1981a). Circadian organization and the photoperiodic phenomena. In B. Follett & D. Follett (Eds.), Biological clocks in seasonal reproductive cycles (pp. 1–35). Bristol, England: Scientechnica.Google Scholar
  67. Pittendrigh, C. S., (1981b). Circadian systems: Entrainment In J. Aschoff (Ed.), Handbook of behavioral neurobiology. Vol.  4. Biological rhythms (pp. 95-12 4). New York: Plenum Press.Google Scholar
  68. Pittendrigh, C. S., & Daan, S. (1976a). A functional analysis of circadian pacemakers in nocturnal rodents I. The stability and lability of spontaneous frequency. Journal of Comparative Physiology, 106, 223–252.CrossRefGoogle Scholar
  69. Pittendrigh, C. S., & Daan, S. (1976b). A functional analysis of circadian pacemakers in nocturnal rodents IV. Entrainment: Pacemaker as clock. Journal of Comparative Physiology, 106, 291–331.CrossRefGoogle Scholar
  70. Pittendrigh, C. S., & Daan, S. (1976c). A functional analysis of circadian pacemakers in nocturnal rodents V. Pacemaker structure: A clock for all seasons. Journal of Comparative Physiology, 106, 333–355.CrossRefGoogle Scholar
  71. Pittendrigh, C., & Minis, D. (1964). The entrainment of circadian oscillations by light and their role as photoperiodic clocks. American Naturalist, 48, 261–294.Google Scholar
  72. Roberts, S. (1962). Circadian activity rhythms in cockroaches II. Entrainment and phase shifting. Journal of Cellular and Comparative Physiology, 59, 175–186.CrossRefGoogle Scholar
  73. Roenneberg, T., & Rehman,J. (1996). Nitrate, a nonphotic signal for the circadian system. FASEB Journal, 10, 1443–1447.PubMedGoogle Scholar
  74. Rusak, B., Mistlberger, R. E., Losier, B., & Jones, C. H. (1988). Daily hoarding opportunity entrains the pacemaker for hamster activity rhythms. journal of Comparative Physiology, A164, 165–171.Google Scholar
  75. Scheer, G. (1952). Beobachtungen and Untersuchungen über die Abhängigkeit des Frühgesanges der Vögel von inneren and äusseren Faktoren. Biologische Abhandlungen, 3/4, 1–68.Google Scholar
  76. Strubbe, J. H., Spited, N.J., & Prins, A. J. A. (1986). Effect of skeleton photoperiod and food availability on the circadian pattern of feeding and drinking in rats. Physiology and Behavior, 36, 647–651.PubMedCrossRefGoogle Scholar
  77. Subbaraj, R., & Chandrashekaran, M. (1981). Mirror imaging phase response curves obtained for the circadian rhythm of a bat with single steps of light and darkness. Journal of Interdisciplinary Cycle Research, 12, 305–312.CrossRefGoogle Scholar
  78. Swade, R. H. (1969). Circadian rhythms in fluctuating light cycles: Toward a new model of entrainment. Journal of Theoretical Biology, 24, 227–239.PubMedCrossRefGoogle Scholar
  79. Takahashi, K, & Sasaki, Y. (1985). Entraining mechanism of endogenous rhythm of blinded rat pups by the nursing mother. In T. Hiroshige & K Honma (Eds.), Circadian clocks and zeitgebers (pp. 157–166). Sapporo, Japan: Hokkaido University Press.Google Scholar
  80. Takahashi, K, Inoue, K, Kobayashi, K, Hayafuji, C., Nakamura, Y., & Takahashi, Y. (1978). Mutual influence of rats having different circadian rhythm of adrenocortical activity. American Journal of Physiology, 234, E515–E520.Google Scholar
  81. Terman, M., Reme, C., & Wirz-Justice, A. (1991). The visual input stage of the mammalian circadian pacemaking system: II. The effect of light and drugs on retinal function. Journal of Biological Rhythms, 6, 31–48.PubMedCrossRefGoogle Scholar
  82. Turek, F. W. (1989). Effects of stimulated physical activity on the circadian pacemaker of vertebrates. Journal of Biological Rhythms, 4, 135–148.PubMedCrossRefGoogle Scholar
  83. Viswanathan, N., & Chandrashekaran, M. (1985). Cycles of presence and absence of mother mouse entrain the circadian clock of pups. Nature, 317, 530–531.PubMedCrossRefGoogle Scholar
  84. Von Holst, E. (1939). Die relative Koordination als Phänomen and als Methode zentralnervöser Funktionsanalyse. Ergebnisse der Physiologie, 42, 228–306.Google Scholar
  85. Voûte, A. (1972). Bijdrage tot de oecologie van de Meervleermuis (Myotis dasycneme (Boie, 1825)). Ph.D. dissertation, Utrecht University, Utrecht, The Netherlands.Google Scholar
  86. Wever, R. (1960). Possibilities of phase-control, demonstrated by an electronic model. Cold Spring Harbor Symposia on Quantitative Biology, 25, 197–206.PubMedCrossRefGoogle Scholar
  87. Wever, R. (1967). Zum Einfluss der Dämmerung auf die circadiane Periodik. Zeitschrift für vergleichende Physiologie, 55, 255–277.Google Scholar
  88. Wever, R. (1972). Virtual synchronisation towards the limits of the range of entrainment. Journal of Theoretical Biology, 36, 119–132.PubMedCrossRefGoogle Scholar
  89. Wiedenmann, G. (1977). Two activity peaks in circadian rhythms of cockroach Leucophaea maderae. Journal of Interdisciplinary Cycle Research, 8, 378–383.CrossRefGoogle Scholar
  90. Winfree, A. (1970). Integrated view of resetting a circadian clock. Journal of Theoretical Biology, 28, 327–374.PubMedCrossRefGoogle Scholar
  91. Zimmerman, W. F., Pittendrigh, C. S., & Pavlidis, T (1968). Temperature compensation of the circadianoscillation in Drosophila pseudoobscura and its entrainment by temperature cycles. Journal of Insect Physiology, 14, 669–684.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Serge Daan
    • 1
  • Jürgen Aschoff
    • 2
  1. 1.Zoological LaboratoryUniversity of GroningenGroningenThe Netherlands
  2. 2.Late of Max Planck Institut für VerhaltensphysiologieAndechsGermany

Personalised recommendations