Skip to main content

Mammalian Photoperiodism

  • Chapter

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 12))

Abstract

Many organisms have evolved physiologic and behavioral adaptations that are presumed to increase reproductive fitness in highly seasonal environments. This review will focus on mammals, the group in which perhaps the most progress has been made in understanding mechanisms of seasonal adjustments at the neuroendocrine level. Seasonal modulation in a typical mammal may involve several traits, including reproductive capacity and related behaviors, increases and decreases in energy storage, and changes in pelage density. Food availability, precipitation, and ambient temperature vary seasonally in a more or less predictable fashion, and are potential environmental zeitgebers. Day length (DL) is, however, the most noise free and probably the most frequently used cue for phasing seasonal responses among mammals in mid and higher latitudes. This use of DL is termed photoperiodism and should be distinguished from the use of photic cues for the entrainment of circadian rhythms. Several review articles summarize recent progress in understanding mammalian photoperiodism (Bartness & Goldman, 1989; Goldman & Elliott, 1988; Goldman & Nelson, 1993; Karsch et al., 1984; Nelson, Badura, & Goldman, 1990). A recapitulation of the extensive corpus of findings is beyond our present scope; instead, we selectively review a few extensively studied model systems. We emphasize ways in which the natural progression of DLs in nature provides information used by animals to achieve seasonally appropriate adjustments. Our emphasis is on species, e.g., hamsters, mice, and voles, in which seasonal transitions do not recur spontaneously in the absence of seasonal changes in DL. These Type I rhythms (Zucker,Lee, & Dark, 1991) are not fully endogenous, and their recurrence in mammals is contingent on seasonal variations in DL and associated changes in the pineal melatonin rhythm. Several species with fully endogenous circannual rhythms are considered in Chapter 19. It should be emphasized that despite the emphasis in this review on Type I rhythms, there is no evidence to suggest that the fundamental mechanisms of photoperiodism are different in Type I and Type II rhythms. Indeed, both types of rhythms appear to depend on a circadian mechanism to measure DL, and the pineal gland is an important part of the photoperiodic mechanism in both (see below).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almeida, O. E X., & Lincoln, G. A. (1984). Reproductive refractoriness in rams and accompanying changes in the patterns of melatonin and prolactin secretion. Biology of Reproduction, 30, 143–158.

    Article  PubMed  CAS  Google Scholar 

  • Badura, L. L., & Goldman, B. D. (1992). Central sites mediating reproductive responses to melatonin in juvenile male Siberian hamsters. Brain Research, 598, 98–106.

    Article  PubMed  CAS  Google Scholar 

  • Badura, L. L., & Goldman, B. D. (1994). Prolactin secretion in female Siberian hamsters following hypothalamic deafferentation: Role of photoperiod and dopamine. Neuroendocrinology, 59, 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Badura, L. L., & Nunez, A. A. (1989). Photoperiodic modulation of sexual and aggressive behavior in female golden hamsters (Mesocricetus auratus): Role of the pineal gland. Hormones and Behavior, 23, 27–42.

    Article  PubMed  CAS  Google Scholar 

  • Badura, L. L., Sisk, C. L., & Nunez, A. A. (1987a). Neural pathways involved in the photoperiodic control of reproductive physiology and behavior in female hamsters (Mesocricetus auratus). Neuroendocrinology, 46, 339–344.

    Article  CAS  Google Scholar 

  • Badura, L. L., Yant, W. R., & Nunez, A. A. (1987b). Photoperiodic modulation of steroid-induced lordosis in golden hamsters. Physiology and Behavior, 40, 551–554.

    Article  CAS  Google Scholar 

  • Bartke, A., Croft, B. T., & Dalterio, S. (1975). Prolactin restores plasma testosterone levels and stimulates testicular growth in hamsters exposed to short day-length. Endocrinology, 97, 1601–1604.

    PubMed  CAS  Google Scholar 

  • Bartness, T. J., & Goldman, B. D. (1989). Mammalian pineal melatonin: A clock for all seasons. Experientia, 45, 939–945.

    Article  PubMed  CAS  Google Scholar 

  • Bartness, T. J., & Wade, G. N. (1984). Photoperiodic control of body weight and energy metabolism in Syrian hamsters (Mesocricetus auratus): Role of pineal gland, melatonin, gonads and diet. Endocrinology, 114, 492–498.

    Article  PubMed  CAS  Google Scholar 

  • Bartness, T. J., & Wade, G. N. (1985). Photoperiodic control of seasonal body weight cycles in hamsters. Neuroscience and Biobehavioral Reviews, 9, 599–612.

    Article  PubMed  CAS  Google Scholar 

  • Bartness, T. J., Wade, G. N., & Goldman, B. D. (1987). Are the short-photoperiod-induced decreases in serum prolactin responsible for the seasonal changes in energy balance in Syrian and Siberian hamsters? Journal of Experimental Zoology, 244, 437–454.

    Article  PubMed  CAS  Google Scholar 

  • Bartness, T. J., Goldman, B. D., & Bittman, E. L. (1990). SCN lesions block the reception of melatonin daylength signals in Siberian hamsters. American Journal of Physiology, 260, R102–R112.

    Google Scholar 

  • Bartness, T. J., Powers, J. B., Hastings, M. H., Bittman, E. L., & Goldman, B. D. (1993). The timed infusion paradigm for melatonin delivery: What has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses? Journal of Pineal Research, 15, 161–190.

    Article  PubMed  CAS  Google Scholar 

  • Berna, M., DeSantis, M., & Mead, R. A. (1988). Effects of suprachiasmatic nuclear ablation and melatonin on delayed implantation in the spotted skunk. Neuroendocrinology, 48, 371–375.

    Article  Google Scholar 

  • Bittman, E. L. (1978). Hamster refractoriness: The role of insensitivity of pineal target tissues. Science, 202, 648–650.

    Article  PubMed  CAS  Google Scholar 

  • Bittman, E. L. (1993). The sites and consequences of melatonin binding in mammals. American Zoologist, 33, 200–211.

    CAS  Google Scholar 

  • Bittman, E. L., & Karsch, F. J. (1984). Nightly duration of pineal melatonin secretion determines the reproductive response to inhibitory day length in the ewe. Biology of Reproduction, 30, 585–593.

    Article  PubMed  CAS  Google Scholar 

  • Bittman, E. L., & Zucker, I. (1981). Photoperiodic termination of hamster refractoriness: Participation of the pineal gland. Biology of Reproduction, 24, 568–572.

    Article  PubMed  CAS  Google Scholar 

  • Bittman, E. L., Goldman, B. D., & Zucker, I. (1979). Testicular responses to melatonin are altered by lesions of the suprachiasmatic nuclei in golden hamsters. Biology of Reproduction, 21, 647–656.

    Article  PubMed  CAS  Google Scholar 

  • Bittman, E. L., Crandell, R. G., & Lehman, M. N. (1989). Influences of the paraventricular and suprachiasmatic nuclei and olfactory bulbs on melatonin responses in the golden hamster. Biology of Reproduction, 40, 118–126.

    Article  PubMed  CAS  Google Scholar 

  • Bittman, E. L., Hegarty, C. M., Layden, M. Q., & Jonassen, J. A. (1990). Influences of photoperiod on sexual behaviour, neuroendocrine steroid receptors and adenohypophysial hormone secretion and gene expression in female golden hamsters. Journal of Molecular Endocrinology, 5, 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Bittman, E. L., Bartness, T. J., & Goldman, B. D. (1991). Suprachiasmatic and paraventricular control of photoperiodism in Siberian hamsters. American Journal of Physiology, 260, R90–R101.

    PubMed  CAS  Google Scholar 

  • Blank, J. L., & Freeman, D. A. (1991). Differential reproductive response to short photoperiod in deer mice: Role of melatonin. Journal of Comparative Physiology A, 169, 501–506.

    Article  CAS  Google Scholar 

  • Blask, D. E., Leadem, C. A., Orstead, K. M., & Larsen, B. R. (1986). Prolactin cell activity in female and male Syrian hamsters: An apparent sexually dimorphic response to light deprivation and pinealectomy. Neuroendocrinology, 42, 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Bonnefond, C., Walker, A. P., Stutz, J. A., Maywood, E., Juss, T. S., Herbert, J., & Hastings, M. H. (1989). The hypothalamus and photoperiodic control of FSH secretion by melatonin in the male Syrian hamster. Journal of Endocrinology, 122, 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Bonnefond, C., Martinet, L., & Monnerie, R. (1990). Effects of timed melatonin infusions and lesions of the suprachiasmatic nuclei on prolactin and progesterone secretions in pregnant or pseudopregnant mink (Mustela vison). Journal of Neuroendocrinology, 2, 583–591.

    Article  PubMed  CAS  Google Scholar 

  • Bronson, F. H. (1989). Mammalian reproductive biology. Chicago: University of Chicago Press.

    Google Scholar 

  • Bronson, F. H., & Heideman, P. D. (1994). Seasonal regulation of reproduction in mammals. In E. Knobil & J. D. Neill (Eds.), Physiology of reproduction (pp. 541–583). New York: Raven Press.

    Google Scholar 

  • Campbell, C. S., Finkelstein, J. S., & Turek, F. W. (1978). The interaction of photoperiod and testosterone on the development of copulatory behavior in castrated male hamsters. Physiology and Behavior, 21, 409–415.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, L. L., Zimmermann, A., & Lynch, G. R. (1989). Geographic differences for delay of sexual maturation in Peromyscus leucopus. Effects of photoperiod, pinealectomy, and melatonin. Biology of Reproduction, 41, 1004–1013.

    Article  PubMed  CAS  Google Scholar 

  • Carter, C. S., Getz, L. L., Gavish, L., McDermott, J. L., & Arnold, P. (1980). Male-related pheromones and the activation of female reproduction in the prairie vole (Microtus ochrogaster). Biology of Reproduction, 23, 1038–1045.

    Article  PubMed  CAS  Google Scholar 

  • Carter, D. S., and Goldman, B. D. (1982). Pineal is required for testicular maintenance in the Turkish hamster (Mesocricetus brandti). Endocrinology, 111, 863–871.

    Article  PubMed  CAS  Google Scholar 

  • Carter, D. S., & Goldman, B. D. (1983a). Antigonadal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus): Duration is the critical parameter. Endocrinology, 113, 1261–1267.

    Article  CAS  Google Scholar 

  • Carter, D. S., Sc Goldman, B. D. (1983b). Progonadal role of the pineal in the Djungarian hamster (Phodopus sungorus sungorus): Mediation by melatonin. Endocrinology, 113, 1268–1273.

    Article  CAS  Google Scholar 

  • Christian, J. J. (1980). Regulation of annual rhythms of reproduction in temperate small rodents. In A. Steinberger & E. Steinberger (Eds.), Testicular development, structure, and function (pp. 367–380). New York: Raven Press.

    Google Scholar 

  • Czyba, J. C., Girod, C., & Durand, N. (1964). Sur l’antagonisme épiphysohypophysiore et les variations saisonniers de la spermatogenese chez le Hamster doré (Mesocricetus auratus). Comptes Rendus des Séances de la Societé de Biologie et de ses Filiales, 158, 742–745.

    PubMed  CAS  Google Scholar 

  • Dark, J., & Zucker, I. (1984). Gonadal and photoperiodic control of seasonal body weight changes in male voles. American Journal of Physiology, 247, R84–R88.

    PubMed  CAS  Google Scholar 

  • Dark, J., Sc Zucker, I. (1985). Seasonal cycles in energy balance: Regulation by light. Annals of the New York Academy of Sciences, 453, 170–181.

    Article  PubMed  CAS  Google Scholar 

  • Dark, J., Johnston, P. G., Healy, M., & Zucker, I. (1983). Latitude of origin influences photoperiodic control of reproduction of deer mice (Peromyscus maniculatus). Biology of Reproduction, 28, 213–220.

    Article  PubMed  CAS  Google Scholar 

  • Desjardins, C., Bronson, E H., & Blank, J. L. (1986). Genetic selection for reproductive photoresponsiveness in deer mice. Nature, 322, 172–173.

    Article  PubMed  CAS  Google Scholar 

  • Donham, R. S., Horton, T. H., Rollag, M. D., & Stetson, M. H. (1989). Age, photoperiodic responses, and pineal function in meadow voles, Microtus pennsylvanicus. Journal of Pineal Research, 7, 243–252.

    Article  PubMed  CAS  Google Scholar 

  • Donham, R. S., Palacio, E., & Stetson, M. H. (1994). Dissociation of the reproductive and prolactin photoperiodic responses in male golden hamsters. Biology of Reproduction, 51, 366–372.

    Article  PubMed  CAS  Google Scholar 

  • Dowell, S. E, & Lynch, G. R. (1987). Duration of the melatonin pulse in the hypothalamus controls testicular function in pinealectomized mice (Peromyscus leucopus). Biology of Reproduction, 36, 1095–1101.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, M. J., & Goldman, B. D. (1984). Hormonal regulation of the pelage color cycle in the Djungarian hamster, Phodopus sungorus. II. Role of prolactin. Journal of Experimental Zoology, 230, 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, M. J., & Goldman, B. D. (1985). Physiological doses of prolactin stimulate pelage pigmentation in Djungarian hamster. American Journal of Physiology, 248, R664–R667.

    PubMed  CAS  Google Scholar 

  • Duncan, M. J., Goldman, B. D., DiPinto, M. N., & Stetson, M. H. (1985). Testicular function and pelage color have different critical daylengths in the Djungarian hamster, Phodopus sungorus sungorus. Endocrinology, 116, 424–430.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, M. J., Takahashi, J. S., Sc Dubocovich, M. L. (1989). Characteristics and autoradiographic localization of 2-[125I]-iodomelatonin binding sites in Djungarian hamster brain. Endocrinology, 125, 1011–1018.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, A. S., & Nunez, A. A. (1992). Photoperiod modulates the effects of steroids on sociosexual behaviors of hamsters. Physiology and Behavior, 51, 1189–1193.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, J. A. (1976). Circadian rhythms and photoperiodic time measurement in mammals. Federation Proceedings, 35, 2339–2346.

    PubMed  CAS  Google Scholar 

  • Elliott, J. A., & Goldman, B. D. (1981). Seasonal reproduction: Photoperiodism and biological clocks. In N. T. Adler (Ed.), Neuroendocrinology of reproduction (pp. 377–423). New York: Plenum Press.

    Chapter  Google Scholar 

  • Elliott, J. A., & Goldman, B. D. (1989). Reception of photoperiodic information by fetal Siberian hamsters: Role of the mother’s pineal gland. Journal of Experimental Zoology, 252, 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, D. A., & Goldman, B. D. (1997a). Evidence that the circadian system mediates photoperiodic nonresponsiveness in Siberian hamsters. Journal of Biological Rhythms, 12, 100–109.

    Article  CAS  Google Scholar 

  • Freeman, D. A., & Goldman, B. D. (1997b). Photoperiodic nonresponsive Siberian hamsters: Effects of age on the probability of nonresponsiveness. Journal of Biological Rhythms, 12, 110–121.

    Article  CAS  Google Scholar 

  • French, A. R. (1988). The patterns of mammalian hibernation. American Scientist, 76, 569–575.

    Google Scholar 

  • Glass, J. D., & Lynch, G. R. (1981). Melatonin: Identification of sites of antigonadal action in mouse brain. Science, 214, 821–823.

    Article  PubMed  CAS  Google Scholar 

  • Glass, J. D., & Lynch, G. R. (1982). Diurnal rhythm of response to chronic intrahypothalamic melatonin injections in the white-footed mouse, Peromyscus leucopus. Neuroendocrinology, 35, 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, B. D. (1983). The physiology of melatonin in mammals. In R. J. Reiter (Ed.), Pineal research reviews (Vol. 1, pp. 145–182). New York: Liss.

    Google Scholar 

  • Goldman, B. D. (1991). Parameters of the circadian rhythm of pineal melatonin secretion affecting reproductive responses in Siberian hamsters. Steroids, 56, 218–225.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, B. D., & Elliott, J. A. (1988). Photoperiodism and seasonality in hamsters: role of the pineal gland. In M. H. Stetson (Ed.), Processing of environmental information in vertebrates (pp. 203–218). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Goldman, B. D., & Nelson, R. J. (1993). Melatonin and seasonality in mammals. In H.S. Yu & R. J. Reiter (Eds.), Melatonin: Biosynthesis, physiological effects, and clinical applications (pp. 225–252). Baco Raton, FL CRC Press.

    Google Scholar 

  • Goldman, B. D., Darrow, J. M., & Yogev, L. (1984). Effects of timed melatonin infusions on reproductive development in the Djungarian hamster (Phodopus sungorus). Endocrinology, 114, 2074–2083.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, S. L., Dhandapani, K., & Goldman, B. D. (2000). Genetic and environmental influences on short-day responsiveness in Siberian hamsters. Journal of Biological Rhythms, 15, 417–428.

    Article  PubMed  CAS  Google Scholar 

  • Gorman, M. R. (1995). Seasonal adaptations of Siberian hamsters: I. Accelerated gonadal and somatic development in increasing versus static long day lengths. Biology of Reproduction, 53, 110–115.

    Article  PubMed  CAS  Google Scholar 

  • Gorman, M. R., & Zucker, I. (1995a). Seasonal adaptations of Siberian hamsters. II. Pattern of change in day length controls annual testicular and body weight rhythms. Biology of Reproduction, 53, 116–125.

    Article  CAS  Google Scholar 

  • Gorman, M. R., & Zucker, I. (1995b). Testicular regression and recrudescence without subsequent photorefractoriness in Siberian hamsters. American journal of Physiology, 269, R800–R806.

    CAS  Google Scholar 

  • Gorman, M. R., & Zucker, I. (1997a). Environmental induction of photononresponsiveness in the Siberian hamster, Phodopus sungorus. American Journal of Physiology, 272, R887–R895.

    CAS  Google Scholar 

  • Gorman, M. R., & Zucker, I. (1997b). Pattern of change in melatonin duration determines testicular responses in Siberian hamsters, Phodopus sungorus. Biology of Reproduction, 56, 668–673.

    Article  CAS  Google Scholar 

  • Gorman, M. R., Freeman, D. A., & Zucker, I. (1997). Photoperiodism in hamsters: Abrupt versus gradual changes in day length differentially entrain morning and evening circadian oscillators. Journal of Biological Rhythms, 12, 122–135.

    Article  PubMed  CAS  Google Scholar 

  • Grosse, J., & Hastings, M. H. (1996). A role for the circadian clock of the suprachiasmatic nuclei in the interpretation of serial melatonin signals in the Syrian hamster. Journal of Biological Rhythms, 11, 317–324.

    Article  PubMed  CAS  Google Scholar 

  • Hall, V. D., & Goldman, B. D. (1982). Hibernation in the female Turkish hamster (Mesocricetus brandti): An investigation of the role of the ovaries and of photoperiod. Biology of Reproduction, 27, 811–815.

    Article  PubMed  CAS  Google Scholar 

  • Hall, V. D., Bartke, A., & Goldman, B. D. (1982). Role of the testes in regulating duration of hibernation in the Turkish hamster (Mesocricetus auratus). Biology of Reproduction, 27, 802–810.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, M. H., Walker, A. P., Roberts, A. C., & Herbert, J. (1988). Intra-hypothalamic melatonin blocks photoperiodic responsiveness in the male Syrian hamster. Neuroscience, 24, 987–991.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, M. H., Vance, G., & Maywood, E. (1989a). Some reflections on the phylogeny and function of the pineal. Experientia, 45, 903–909.

    Article  CAS  Google Scholar 

  • Hastings, M. H., Walker, A. P., Powers, J. B., Hutchison, J., Steel, E. A., & Herbert, J. (1989b). Differential effects of photoperiodic history on the response of gonadotrophins and prolactin to intermediate daylengths in the male Syrian hamster. journal of Biological Rhythms, 4, 335–350.

    Article  CAS  Google Scholar 

  • Hastings, M. H., Maywood, E. S., Ebling, F. J. P., Williams, L. M., & Titchener, L. (1991). Sites and mechanism of action of melatonin in the photoperiodic control of reproduction. In J. Arendt & P. Pevet (Eds.), Advances in pineal research (pp. 147–157). London: Libbey.

    Google Scholar 

  • Heath, H. W., & Lynch, G. R. (1982). Intraspecific differences for melatonin-induced reproductive regression and the seasonal molt in Peromyscus leucopus. General and Comparative Endocrinology, 48, 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Heideman, R D., & Bronson, E H. (1993). Sensitivity of Syrian hamsters (Mesocricetus auratus) to amplitudes and rates of photoperiodic change typical of the tropics. Journal of Biological Rhythms, 8, 325–337.

    Article  PubMed  CAS  Google Scholar 

  • Herbert, J., & Klinowska, M. (1978). Day length and the annual reproductive cycle in the ferret (Mustelo furo): The role of the pineal body. In I. Assenmacher & D. S. Farner (Eds.), Environmental endocrinology (pp. 87–93). Berlin: Springer-Verlag.

    Google Scholar 

  • Herbert, J., Stacey, P. M., & Thorpe, D. H. (1978). Recurrent breeding seasons in pinealectomized or optic-nerve-sectioned ferrets. Journal of Endocrinology, 78, 389–397.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, R. A., & Reiter, R. J. (1965). Pineal gland: Influence on gonads of male hamsters. Science, 148, 1609–1611.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, R. A., Davidson, K., & Steinberg, K. (1982). Influence of photoperiod and temperature on weight gain, food consumption, fat pads and thyroxine in male golden hamsters. Growth, 46,150–162.

    PubMed  CAS  Google Scholar 

  • Hoffmann, K. (1981). Photoperiodism in vertebrates. In J. Aschoff (Ed.), Handbook of behavioral neuro-biology. Biological rhythms (pp. 449–473). New York: Plenum Press.

    Google Scholar 

  • Hoffmann, K., Sc Illnerova, H. (1986). Photoperiodic effects in the Djungarian hamster. Rate of testicular regression and extension of pineal melatonin pattern depend on the way of change from long to short photoperiods. Neuroendocrinology, 43, 317–321.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, K., Illnerova, H., & Vanecek, J. (1986). Change in duration of the nighttime melatonin peak may be a signal driving photoperiodic response in the Djungarian hamster (Phodopus sungorus). Neuroscience Letters, 67, 68–72.

    Article  PubMed  CAS  Google Scholar 

  • Hong, S. M., Rollag, M. D., & Stetson, M. H. (1986). Maintenance of testicular function in Turkish hamsters: Interaction of photoperiod and the pineal gland. Biology of Reproduction, 34, 527–531.

    Article  PubMed  CAS  Google Scholar 

  • Honrado, G. I., Bird, M., & Fleming, A. S. (1991a). The effects of short day exposure on seasonal and circadian reproductive rhythms in male golden hamsters. Physiology and Behavior, 49, 277–287.

    Article  CAS  Google Scholar 

  • Honrado, G. I., Paclik, L., & Fleming, A. S. (1991b). The effects of short day exposure on the seasonal and reproductive rhythms of female golden hamsters. Physiology and Behavior, 50, 357–363.

    Article  CAS  Google Scholar 

  • Horton, T. H. (1984). Growth and maturation in Microtus montanus Effects of photoperiods before and after weaning. Canadian Journal of Zoology, 62, 1741–1746.

    Article  Google Scholar 

  • Horton, T. H. (1985). Cross-fostering of voles demonstrates in utero effect of photoperiod. Biology of Reproduction, 33, 934–939.

    Article  PubMed  CAS  Google Scholar 

  • Illnerova, H., & Vanacek, J. (1989). Complex control of the circadian rhythm in pineal melatonin production. In B. Mess, C. Ruzsas, L. Tima, & P. Pevet (Eds.), The pineal gland: Current state of pineal research (pp. 137–153). Amsterdam- Elsevier, and Budapest: Akademiai Kiado.

    Google Scholar 

  • Johnston, P. G., & Zucker, I. (1980). Photoperiodic regulation of the testes of adult white-footed mice (Peromyscus leucopus). Biology of Reproduction, 23, 859–866.

    Article  PubMed  CAS  Google Scholar 

  • Karp, J. D., & Powers, J. B. (1993). Photoperiodic and pineal influences on estrogen-stimulated behaviors in female Syrian hamsters. Physiology and Behavior, 54, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Karp, J. D., Dixon, M. E., & Powers, J. B. (1990). Photoperiod history, melatonin, and reproductive responses of male Syrian hamsters. Journal of Pineal Research, 8, 137–152.

    Article  PubMed  CAS  Google Scholar 

  • Karp, J. D., Hastings, M. H., & Powers, J. B. (1991). Melatonin and the coding of day length in male Syrian hamsters. Journal of Pineal Research, 10, 210–217.

    Article  PubMed  CAS  Google Scholar 

  • Karsch, F. J., Bittman, E. L., Foster, D. L., Goodman, R. L., Legan, S. J., & Robinson, J. E. (1984). Neuroendocrine basis of seasonal reproduction. Recent Progress in Hormone Research, 40, 185–225.

    PubMed  CAS  Google Scholar 

  • Karsch, F. J., Bittman, E. L., Robinson, J. E., Yellon, S. M., Wayne, N. L., Olster, D. H., & Kaynard, A. H. (1986). Melatonin and photorefractoriness: Loss of response to the melatonin signal leads to seasonal reproductive transitions in the ewe. Biology of Reproduction, 34, 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Kerbeshian, M. C., Bronson, F. H., & Bellis, E. D. (1994). Variation in reproductive photoresponsiveness in a wild population of meadow voles. Biology of Reproduction, 50, 745–750.

    Article  PubMed  CAS  Google Scholar 

  • Miman, R. M., & Lynch, G. R. (1992). Evidence for genetic variation in the occurrence of the photoresponse of the Djungarian hamster, Phodopus sungorus. Journal of Biological Rhythms, 7, 161–175.

    Article  Google Scholar 

  • Krause, D. N., & Dubocovich, M. L. (1990). Regulatory sites in the melatonin system of mammals. Trends in Neuroscience, 13, 464–470.

    Article  CAS  Google Scholar 

  • Lee, T. M. (1993). Development of meadow voles is influenced postnatally by maternal photoperiodic history. American Journal of Physiology, 265, R749–R755.

    PubMed  CAS  Google Scholar 

  • Lee, T. M., & Zucker, I. (1988). Vole infant development is influenced perinatally by maternal photo-periodic history. American Journal of Physiology, 255, R831–R838.

    PubMed  CAS  Google Scholar 

  • Lehman, M. N., Bittman, E. L., & Newman, S. W. (1984). Role of the hypothalamic paraventricular nucleus in neuroendocrine responses to daylength in the golden hamster. Brain Research, 308, 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Lerchl, A., & Nieschlag, E. (1992). Interruption of nocturnal pineal melatonin synthesis in spontaneous recrudescent Djungarian hamsters (Phodopus sungorus). Journal of Pineal Research, 13, 36–41.

    Article  PubMed  CAS  Google Scholar 

  • Lerner, A. B., Case, J. D., Lee, T. H., Takahashi, Y., & Mori, W. (1958). Isolation of melatonin, the pineal factor that lightens melanocytes. Journal of the American Chemical Society, 80, 2587–2594.

    Article  CAS  Google Scholar 

  • Lincoln, G. A. (1992). Administration of melatonin into the mediobasal hypothalamus as a continuous or intermittent signal affects the secretion of follicle stimulating hormone and prolactin in the ram. Journal of Pineal Research, 12, 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln, G. A. (1994). Effects of placing micro-implants of melatonin in the pars tuberalis, pars distalis and the lateral septum of the forebrain on the secretion of FSH and prolactin, and testicular size in rams. Journal of Endocrinology, 142, 267–276.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln, G. A., & Clarke, I. J. (1994). Photoperiodically-induced cycles in the secretion of prolactin in hypothalamo-pituitary disconnected rams: Evidence for translation of the melatonin signal in the pituitary gland. Journal of Neuroendocrinology, 6, 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln, G. A., & Maeda, K. -I. (1992). Reproductive effects of placing micro-implants of melatonin in the mediobasal hypothalamus and preoptic area in rams. Journal of Endocrinology, 132, 201–215.

    Article  PubMed  CAS  Google Scholar 

  • Loudon, A. S. I. (1994). Photoperiod and the regulation of annual and circannual cycles of food intake. Proceedings of the Nutrition Society, 53, 495–507.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, G. R., Heath, H. W., & Johnston, C. M. (1981). Effect of geographical origin on the photoperiodic control of reproduction in the white-footed mouse, Peromyscus leucopus. Biology of Reproduction, 25, 475–480.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, G. R., Sullivan, J. K., Heath, H. W., & Tamarkin, L. (1982). Daily melatonin rhythms in photo-period sensitive and insensitive while-footed mice (Peromyscus leucopus). In R. J. Reiter (Ed.), The pineal and its hormones (pp. 67–73). New York: Liss.

    Google Scholar 

  • Malpaux, B., Robinson, J. E., & Karsch, E J. (1987). Reproductive refractoriness of the ewe to inductive photoperiod is not caused by inappropriate secretion of melatonin. Biology of Reproduction, 36,1333–1341.

    Article  PubMed  CAS  Google Scholar 

  • Malpaux, B., Moenter, S. M., Wayne, N. L., Woodfill, C. J. I., & Karsch, F. J. (1988). Reproductive refactoriness of the ewe to inhibitory photoperiod is not caused by alteration of the circadian secretion of melatonin. Neuroendocrinology, 48, 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Malpaux, B., Daveau, A., Maurice, F., Gayrard, V., & Thiery, J.-C. (1993). Short-day effects of melatonin on luteinizing hormone secretion in the ewe: Evidence for central sites of action in the mediobasal hypothalamus. Biology of Reproduction, 48, 752–760.

    Article  PubMed  CAS  Google Scholar 

  • Malpaux, B., Daveau, A., Maurice, E, Locatelli, A., & Thiéry, J. C. (1994). Evidence that melatonin binding sites in the pars tuberalis do not mediate the photoperiodic actions of melatonin on LH and prolactin secretion in ewes. Journal of Reproduction and Fertility, 101, 625–632.

    Article  PubMed  CAS  Google Scholar 

  • Malpaux, B., Skinner, D. C., & Maurice, E (1995). The ovine pars tuberalis does not appear to be targeted by melatonin to modulate luteinizing hormone secretion, but may be important for prolactin release. Journal of Neuroendocrinology, 7 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Martinet, L., Allain, D., & Weiner, C. (1984). Role of prolactin in the photoperiodic control of moulting in the mink (Mustela vison). Journal of Endocrinology, 103, 9–15.

    Article  PubMed  CAS  Google Scholar 

  • Maywood, E. S., & Hastings, M. H. (1995). Lesions of the iodomelatonin-binding sites of the mediobasal hypothalamus spare the lactotropic, but block the gonadotropic response of male Syrian hamsters to short photoperiod and to melatonin. Endocrinology, 136, 144–153.

    Article  PubMed  CAS  Google Scholar 

  • Maywood, E. S., Buttery, R. C., Vance, G. H. S., Herbert, J., & Hastings, M. H. (1990). Gonadal responses of the male Syrian hamster to programmed infusions of melatonin are sensitive to signal duration and frequency but not to signal phase nor to lesions of the suprachiasmatic nuclei. Biology of Reproduction, 43, 174–182.

    Article  PubMed  CAS  Google Scholar 

  • Maywood, E. S., Grosse, J., Lindsay, J. O., Karp, J. D., Powers, J. B., Ebling, E J. P., Herbert, J., & Hastings, M. H. (1992). The effect of signal frequency on the gonadal response of male Syrian hamsters to programmed melatonin infusions. Journal of Neuroendocrinology, 4, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • McCord, C. P., & Allen, F. P. (1917). Evidences associating pineal gland function with alterations in pigmentation. Journal of Experimental Zoology, 23, 207.

    Article  CAS  Google Scholar 

  • Miernicki, M., Karp, J. D., & Powers, J. B. (1990). Pinealectomy prevents short photoperiod inhibition of male hamster sexual behavior. Physiology and Behavior, 47, 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Milette, J. J., Schwartz, N. B., & Turek, F. W. (1988). Importance of follicle-stimulating hormone in the initiation of testicular growth in photostimulated Djungarian hamsters. Endocrinology, 122, 1060–1066.

    Article  PubMed  CAS  Google Scholar 

  • Minneman, K. P., & Wurtman, R. J. (1976). The pharmacology of the pineal gland. Annual Review of Pharmacology and Toxicology, 16, 33–51.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., & Klein, D. C. (1974). Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Research, 71, 17–33.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, P. J., Barrett, P., Howell, H. E., & Helliwell, R. (1994). Melatonin receptors: Localization, molecular pharmacology and physiological significance. Neurochemistry International, 24, 101–146.

    Article  PubMed  CAS  Google Scholar 

  • Morin, L. P., & Zucker, I. (1978). Photoperiodic regulation of copulatory behaviour in the male hamster. Journal of Endocrinology, 77, 244–258.

    Article  Google Scholar 

  • Nelson, R. J. (1985). Photoperiod influences reproduction in the prairie vole (Microtus ochrogaster). Biology of Reproduction, 33, 596–602.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R. J. (1987). Photoperiod-nonresponsive morphs: A possible variable in microtine population-density fluctuations. American Naturalist, 130, 350–369.

    Article  Google Scholar 

  • Nelson, R. J., Bamat, M. K., & Zucker, I. (1982). Photoperiodic regulation of testis function in rats: Mediation by a circadian mechanism. Biology of Reproduction, 26, 329–335.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R. J., Badura, L. L., & Goldman, B. D. (1990). Mechanisms of seasonal cycles of behavior. Annual Review of Psychology, 41, 81–108.

    Article  PubMed  CAS  Google Scholar 

  • Niklowitz, P., & Hoffmann, K. (1988). Pineal and pituitary involvement in the photoperiodic regulation of body weight, coat color and testicular size of the Djungarian hamster, Phodopus sungorus. Biology of Reproduction, 39, 489–498.

    Article  PubMed  CAS  Google Scholar 

  • Niklowitz, P., Lerchl, A., & Nieschlag, E. (1994). Photoperiodic responses in Djungarian hamsters (Phodopus sungorus): Importance of light history for pineal and serum melatonin profiles. Biology of Reproduction, 51, 714–724.

    Article  PubMed  CAS  Google Scholar 

  • Pitrosky, B., Kirsch, R., Vivien-Roels, B., Georg-Bentz, I., Canguilhem, B., & Pevet, P. (1995). The photoperiodic response in Syrian hamster depends upon a melatonin-driven circadian rhythm of sensitivity to melatonin. Journal of Neuroendocrinology, 7, 889–895.

    Article  PubMed  CAS  Google Scholar 

  • Powers, J. B., Steel, E. A., Hutchison, J. B., Hastings, M. H., Herbert, J., & Walker, A. P. (1989). Photoperiodic influences on sexual behavior in male Syrian hamsters. Journal of Biological Rhythms, 4(1), 61–78.

    Article  PubMed  CAS  Google Scholar 

  • Puchalski, W., & Lynch, G. R. (1986). Evidence for differences in the circadian organization of hamsters exposed to short day photoperiod. Journal of Comparative Physiology A, 159, 7–11.

    Article  CAS  Google Scholar 

  • Puchalski, W., & Lynch, G. R. (1988). Characterization of circadian function in Djungarian hamsters insensitive to short day photoperiod. Journal of Comparative Physiology A, 162, 309–316.

    Article  CAS  Google Scholar 

  • Ralph, C. L., Mull, D., Lynch, H. J., & Hedlund, L. (1971). A melatonin rhythm persists in rat pineals in darkness. Endocrinology, 89, 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, R. J. (1969). Pineal function in long term blinded male and female golden hamsters. General and Comparative Endocrinology, 12, 460–468.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, R. J. (1980). The pineal and its hormones in the control of reproduction. Endocrine Reviews, 1, 109–131.

    Article  PubMed  CAS  Google Scholar 

  • Rivkees, S. A., Hall, D. A., Weaver, D. R., & Reppert, S. M. (1988). Djungarian hamsters exhibit reproductive responses to changes in daylength at extreme photoperiods. Endocrinology, 122, 2634–2638.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. E., & Karsch, F. J. (1984). Refractoriness to inductive day lengths terminates the breeding season of the suffolk ewe. Biology of Reproduction, 31, 656–663.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. E., & Karsch, F. J. (1987). Photoperiodic history and a changing melatonin pattern can determine the neuroendocrine response of the ewe to daylength. Journal of Reproduction and Fertility, 80, 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. E., Wayne, N. L., & Karsch, F. J. (1985). Refractoriness to inhibitory day lengths initiates the breeding season of the suffolk ewe. Biology of Reproduction, 32, 1024–1030.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, D., & Goldman, B. D. (1995a). Gender differences in influence of prenatal photoperiods on postnatal pineal melatonin rhythms and serum prolactin and follicle-stimulating hormone in the Siberian hamster (Phodopus sungorus). Endocrinology, 136, 4237–4246.

    Article  CAS  Google Scholar 

  • Shaw, D., & Goldman, B. D. (1995b). Influence of prenatal and postnatal photoperiods on postnatal testis development in the Siberian hamster (Phodopus sungorus). Biology of Reproduction, 52, 833–838.

    Article  CAS  Google Scholar 

  • Shaw, D., & Goldman, B. D. (1995c). Influence of prenatal photoperiods on postnatal reproductive responses to daily infusions of melatonin in the Siberian hamster (Phodopus sungorus). Endocrinology, 136, 4231–4236.

    Article  CAS  Google Scholar 

  • Smale, L., Dark, J., & Zucker, I. (1988a). Pineal and photoperiod influences on fat deposition, pelage, and testicular activity in male meadow voles. Journal of Biological Rhythms, 3, 349–355.

    Article  CAS  Google Scholar 

  • Smale, L., Nelson, R. J., & Zucker, I. (1988b). Daylength influences pelage and plasma prolactin concentrations but not reproduction in the prairie vole, Microtus ochrogaster. Journal of Reproduction and Fertility, 83, 99–106.

    Article  CAS  Google Scholar 

  • Song, C. K., & Bartness, T.J. (1996). The effects of anterior hypothalamic lesions on short-day responses in Siberian hamsters given timed melatonin infusions. Journal of Biological Rhythms, 11(1), 14–26.

    Article  PubMed  CAS  Google Scholar 

  • Steinlechner, S., Heldmaier, G., & Becker, H. (1983). The seasonal cycle of body weight in the Djungarian hamster: Photoperiodic control and the influence of starvation and melatonin. Oecologia, 60, 401–405.

    Article  Google Scholar 

  • Stetson, M. H., & Watson-Whitmyre, M. (1986). Effects of exogenous and endogenous melatonin on gonadal function in hamsters. Journal of Neural Transmission Supplement, 21, 55–80.

    PubMed  CAS  Google Scholar 

  • Stetson, M. H., Watson-Whitmyre, M., & Matt, K. S. (1977). Termination of photorefractoriness in golden hamsters: Photoperiodic requirements. Journal of Experimental Zoology, 202, 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Stetson, M. H., Elliott, J. A., Sc Goldman, B. D. (1986). Maternal transfer of photoperiodic information influences the photoperiodic response of prepubertal Djungarian hamsters (Phodopus sungorus). Biology of Reproduction, 34, 664–669.

    Article  PubMed  CAS  Google Scholar 

  • Stirland, J. A., Grosse, J., Loudon, A. S. I., Hastings, M. H., & Maywood, E. S. (1995). Gonadal responses of the male tau mutant Syrian hamster to short-day-like programmed infusions of melatonin. Biology of Reproduction, 53, 361–367.

    Article  PubMed  CAS  Google Scholar 

  • Stirland, J. A., Hastings, M. H., Loudon, A. S. I., & Maywood, E. S. (1996a). The tau mutation in the Syrian hamster alters the photoperiodic responsiveness of the gonadal axis to melatonin signal frequency. Endocrinology, 137, 2183–2186.

    Article  CAS  Google Scholar 

  • Stirland, J. A., Mohammad, Y. N., & Loudon, A. S. I. (1996b). A mutation of the circadian timing system (tau gene) in the seasonally breeding Syrian hamster alters the reproductve response to photoperiod change. Proceedings of the Royal Society of London. B. Biological Sciences, 263, 345–350.

    CAS  Google Scholar 

  • Sullivan, J. K, Sc Lynch, G. R. (1986). Photoperiod time measurement for activity torpor, molt and reproduction in mice. Physiology and Behavior, 36, 167–174.

    Article  PubMed  CAS  Google Scholar 

  • Tamarkin, L., Hollister, C. W., Lefebvre, N. G., & Goldman, B. D. (1977). Melatonin induction of gonadal quiesence in pinealectomized Syrian hamsters. Science, 198, 953–955.

    Article  PubMed  CAS  Google Scholar 

  • Underwood, H., & Goldman, B. D. (1987). Vertebrate circadian and photoperiodic systems: Role of the pineal gland and melatonin. Journal of Biological Rhythms, 2, 279–315.

    Article  PubMed  CAS  Google Scholar 

  • Vitale, P. M., Darrow, J. M., Duncan, M. J., Shustak, C. A., & Goldman, B. D. (1985). Effects of photo-period, pinealectomy and castration on body weight and daily torpor in Djungarian hamsters (Phodopus sungorus). Journal of Endocrinology, 106, 367–375.

    Article  PubMed  CAS  Google Scholar 

  • Vitaterna, M. H., Sc Turek, F. W. (1993). Photoperiodic responses differ among inbred strains of golden hamsters (Mesocricetus auratus). Biology of Reproduction, 49, 496–501.

    Article  PubMed  CAS  Google Scholar 

  • Wade, G. N. (1986). Sex steroids and energy balance: Sites and mechanisms of action. Annals of the New York Academy of Sciences, 474, 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Wade, G. N., Bartness, T. J., & Alexander, J. R. (1986). Photoperiod and body weight in female Syrian hamsters: Skeleton photoperiods, response magnitude, and development of refractoriness. Physiology and Behavior, 37, 863–868.

    Article  PubMed  CAS  Google Scholar 

  • Watson-Whitmyre, M., & Stetson, M. H. (1983). Simulation of peak pineal melatonin release restores sensitivity to evening melatonin injections in pinealectomized hamsters. Endocrinology, 112, 763–765.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, D. R., & Reppert, S. M. (1986). Maternal melatonin communicates daylength to the fetus in Djungarian hamsters. Endocrinology, 119, 2861–2863.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, D. R., Keohan, J. T., & Reppert, S. M. (1987). Definition of a prenatal sensitive period for maternal-fetal communication of daylength. American Journal of Physiology, 253, E701–E704.

    PubMed  CAS  Google Scholar 

  • Zucker, I. (1985). Pineal gland influences period of circannual rhythms of ground squirrels. American Journal of Physiology, 249, R111–R115.

    PubMed  CAS  Google Scholar 

  • Zucker, I., Lee, T. M., & Dark, J. (1991). Suprachiasmatic nucleus and annual rhythms of mammals In D. C. Klein, R. Y. Moore, & S. M. Reppert (Eds.), Suprachiasmatic nucleus: The mind’s clock (pp. 246–259). New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gorman, M.R., Goldman, B.D., Zucker, I. (2001). Mammalian Photoperiodism. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1201-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5438-3

  • Online ISBN: 978-1-4615-1201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics