Skip to main content

Processes Underlying the Regulation of the Sleep-Wake Cycle

  • Chapter
Circadian Clocks

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 12))

Abstract

Sleep and waking are the two major functional states which in homeotherms can be unambiguously identified by both behavioral and electrophysiologic criteria. Sleep and waking are closely associated with rest and activity. The circadian rest-activity rhythm is present in organisms in which the usual criteria for sleep and waking cannot be applied (e.g., in invertebrates). In fact, sleep and waking may have evolved from the states of rest and activity whose propensity is modulated by the circadian pacemaker. It has been argued that the emergence of sleep has brought an increased flexibility by loosening the control of the circadian pacemaker over behavior and enabling a need-dependent recovery (Borbély and Neuhaus, 1979). It is in particular the intensity dimension of sleep which can be viewed as allowing sleep to fulfil its putative need-dependent functions without disrupting the circadian sleep-wake rhythm. As will be shown, there is evidence that the circadian and sleep-wakedependent aspects of sleep regulation are based on separate mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achermann, P. (1988). Schlafregulation des Menschen: Modelle und Computersimulationen. Ph.D. thesis, ETH Zürich, Zürich.

    Google Scholar 

  • Achermann, P., & Borbély, A. A. (1990). Simulation of human sleep: ultradian dynamics of EEG slow-wave activity. Journal of Biological Rhythms, 5, 141–157.

    Article  PubMed  CAS  Google Scholar 

  • Achermann, P., & Borbély, A. A. (1992). Combining different models of sleep regulation. Journal of Sleep Research, 1, 144–147.

    Article  PubMed  Google Scholar 

  • Achermann, P., & Borbély, A. A. (1994). Simulation of daytime vigilance by additive interaction of a homeostatic and a circadian process. Biological Cybernetics, 71, 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Achermann, P., Beersma, D. G. M., & Borbély, A. A. (1990) The two-process model: Ultradian dynamics of sleep. In J. A. Home (Ed.), Sleep ‘80 (pp. 296–300). Bochum, Germany: Pontenagel Press.

    Google Scholar 

  • Achermann, P., Dijk, D.J., Brunner, D. P., & Borbély, A. A. (1993). A model of human sleep homeostasis based on EEG slow-wave activity: Quantitative comparison of data and simulations. Brain Research Bulletin, 31, 97–113.

    Article  PubMed  CAS  Google Scholar 

  • Aeschbach, D., & Borbély, A. A. (1993). All-night dynamics of the human sleep EEG. Journal of Sleep Research, 2, 70–81.

    Article  PubMed  Google Scholar 

  • Akerstedt, T., & Folkard, S. (1990). A model of human sleepiness. In J. A. Horne (Ed.), Sleep ‘80 (pp. 310313). Bochum, Germany: Pontenagel Press.

    Google Scholar 

  • Akerstedt, T., & Folkard, S. (1995). Validation of the S and C components of the three-process model of alertness regulation. Sleep, 18, 1–6.

    PubMed  CAS  Google Scholar 

  • Akerstedt, T., & Fróberg, J. E. (1977). Physiological circadian rhythms in women during 72 h of sleep deprivation. Waking and Sleeping, 1, 387–394.

    Google Scholar 

  • Ákerstedt, T., & Gillberg, M. (1981). The circadian variation of experimentally displaced sleep. Sleep, 4, 159–169.

    PubMed  Google Scholar 

  • Äkerstedt, T., & Gillberg, M. (1986a). Sleep duration and the power spectral density of the EEG. Electroencephalography and Clinical Neurophysiology, 64, 119–222.

    Article  Google Scholar 

  • Äkerstedt, T., & Gillberg, M. (1986b). A dose-response study of sleep loss and spontaneous sleep termination. Psychophysiology, 64, 119–222.

    Google Scholar 

  • Alfóldi, P., Tobler, I., Sc Borbély, A. A. (1990). Sleep regulation in rats during early development. American Journal of Physiology, 258, 634–644.

    Google Scholar 

  • Aschoff, J. (1965). Circadian rhythms in man. Science, 148, 1427–1432.

    Article  PubMed  CAS  Google Scholar 

  • Aschoff, J., Gerecke, U., Sc Weyer, R. (1967). Desynchronization of human circadian rhythms. Japanese Journal of Physiology, 17, 450–457.

    Article  PubMed  CAS  Google Scholar 

  • Beersma, D. G. M., & Daán, S. (1992). Generation of activity-rest patterns by dual circadian pacemaker systems: A model. Journal of Sleep Research, 1, 84–87.

    Article  PubMed  Google Scholar 

  • Beersma, D. G. M., Daan, S., & Van den Hoofdakker, R. H. (1984). Distribution of REM latencies and other sleep phenomena in depression as explained by a single ultradian rhythm disturbance. Sleep, 7, 126–136.

    PubMed  CAS  Google Scholar 

  • Beersma, D. G. M., Daan, S., & Dijk, D.J. (1987). Sleep intensity and timing-A model for their circadian control. Lectures on Mathematics in the Life Sciences, 19, 39–62.

    Google Scholar 

  • Beersma, D. G. M., Dijk, D.J., Blok, C. G. H., & Everhardus, I. (1990). REM sleep deprivation during five hours leads to an immediate REM sleep rebound and to suppression of non-REM sleep intensity. Electroencephalography and Clinical Neurophysiology, 76, 114–122.

    Article  PubMed  CAS  Google Scholar 

  • Berger, R. J., & Oswald, I. (1962). Effects of sleep deprivation on behavior, subsequent sleep, and dreaming. Journal of Mental Science, 108, 457–465.

    PubMed  CAS  Google Scholar 

  • Berger, R. J., Walker, J. M., Scott, T. D., Magnusson, L. J., & Pollack, S. L. (1971). Diurnal and nocturnal sleep stage patterns following sleep deprivation. Psychonomic Science, 23, 273–275.

    Google Scholar 

  • Blake, H., & Gerard, R. W. (1937). Brain potentials during sleep. American Journal of Physiology, 119, 692–703.

    Google Scholar 

  • Borbély, A. A. (1975). Circadian rhythm of vigilance in rat: Modulation by short light-dark cycles. Neuroscience Letters, 1, 67–71.

    Article  PubMed  Google Scholar 

  • Borbély, A. A. (1980). Sleep: Circadian rhythm versus recovery process. In M. Koukkou, D. Lehmann & J. Angst (Eds.), Functional states of the brain: Their determinants (pp. 151–161). Amsterdam. Elsevier.

    Google Scholar 

  • Borbély, A. A. (1982a). Sleep regulation: Circadian rhythm and homeostasis. In D. Ganten & D. Pfaff (Eds.), Current topics in neuroendocrinology. Sleep: clinical and experimental aspects (Vol. 1, pp. 83–103). Berlin: Springer-Verlag.

    Google Scholar 

  • Borbély, A. A. (1982b). A two-process model of sleep. Human Neurobiology, 1, 195–204.

    Google Scholar 

  • Borbély, A. A. (1994). Sleep homeostasis and models of sleep regulation. In M. H. Kryger, T. Roth, & W. C. Dement (Eds.), Principles and practice of sleep medicine, (2nd ed., pp. 309–320). Philadelphia: Saunders.

    Google Scholar 

  • Borbély, A. A., & Achermann, P. (1992). Concepts and models of sleep regulation: An overview. Journal of Sleep Research, 1, 63–79.

    Article  PubMed  Google Scholar 

  • Borbély, A. A., & Neuhaus, H. U. (1979). Sleep-deprivation: Effect on sleep and EEG in the rat. Journal of Comparative Physiology, 133, 71–87.

    Article  Google Scholar 

  • Borbély, A. A., Huston, J. P., & Waser, R. G. (1975). Control of sleep states in the rat by short light-dark cycles. Brain Research, 95, 89–101.

    Article  PubMed  Google Scholar 

  • Borbély, A. A., Baumann, F., Brandeis, D., Strauch, I., & Lehmann, D. (1981). Sleep deprivation; effect on sleep stages and EEG power density in man. Electroencephalography and Clinical Neurophysiology, 51, 483–493.

    Article  PubMed  Google Scholar 

  • Borbély, A. A., Tobler, I., & Hanagasioglu, M. (1984). Effect of sleep deprivation on sleep and EEG power spectra in the rat. Behavioral Brain Research, 14, 171–182.

    Article  Google Scholar 

  • Borbély, A. A., Achermann, P., Trachsel, L., & Tobler, I. (1989). Sleep initiation and sleep intensity: Interaction of homeostatic and circadian mechanisms. Journal of Biological Rhythms, 4, 149–160.

    Article  PubMed  Google Scholar 

  • Brunner, D. P., Dijk, D.J., Tobler, I., & Borbély, A. A. (1990). Effect of partial sleep deprivation on sleep stages and EEG power spectra: Evidence for nonREM and REM sleep homeostasis. Electroencephalography and Clinical Neurophysiology, 75, 492–499.

    Article  PubMed  CAS  Google Scholar 

  • Brunner, D. P., Dijk, D.J., & Borbély, A. A. (1993). Repeated partial sleep deprivation progressively changes the EEG during sleep and wakefulness. Sleep, 16, 100–113.

    PubMed  CAS  Google Scholar 

  • Bunnell, D. E., & Horvath, S. M. (1985). Effects of body heating during sleep interruption. Sleep, 8, 274–282. Cannon, W. B. (1939). The wisdom of the body. New York: Norton.

    Google Scholar 

  • Carskadon, M. A., & Dement, W. C. (1975). Sleep studies on a 90-minute day. Electroencephalography and Clinical Neurophysiology, 39, 145–155.

    Article  PubMed  CAS  Google Scholar 

  • Carskadon, M. A., & Dement, W. C. (1980). Distribution of REM sleep on a 90 min sleep-wake schedule. Sleep, 2, 309–317.

    PubMed  CAS  Google Scholar 

  • Cartwright, R. D., Monroe, L. J., & Palmer, C. (1967). Individual differences in response to REM deprivation. Archives of General Psychiatry, 16, 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Church, M. W., March, J. D., Hibi, S., Cavness, C., & Feinberg, I. (1975). Changes in frequency and amplitude of delta activity during sleep. Electroencephalography and Clinical Neurophysiology, 39, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Czeisler, C. A. (1978). Human circadian physiology: Internal organization of temperature, sleep-wake and neuro-endocrine rhythms monitored in an environment free of time cues. Ph.D. dissertation, Stanford University, Stanford, California.

    Google Scholar 

  • Czeisler, C. A., Zimmerman, J. C. Ronda, J. M., Moore-Ede, M. C., & Weitzman, E. D. (1980a). Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. Sleep, 2, 329–346.

    CAS  Google Scholar 

  • Czeisler, C. A., Weitzman, E. D., Moore-Ede, M. C., Zimmerman, J. C., & Kronauer, R. S. (1980b). Human sleep: Its duration and organization depend on its circadian phase. Science, 210, 1264–1267.

    Article  CAS  Google Scholar 

  • Czeisler, C. A., Dumont, M., Duffy, J. F., Steinberg, J. D., Richardson, G. S., Brown, E. N., Sánchez, R., Ríos, C. D., & Ronda, J. M. (1992). Association of sleep-wake habits in older people with changes in output of circadian pacemaker. Lancet, 340, 933–936.

    Article  PubMed  CAS  Google Scholar 

  • Czeisler, C. A., Duffy, J. F., Shanahan, T. L., Brown, E. N., Mitchell, J. F., Dijk, D.J., Rimmer, D. W., Ronda, J. M., Allan, J. S., Emens J. S., & Kronauer, R. E. (1995). Reassessment of the intrinsic period of the human circadian pacemaker in young and older subjects. Sleep Research, 24A, 505.

    Google Scholar 

  • Daan, S., & Beersma, D. G. M. (1984). Circadian gating of human sleep-wake cycles. In M. C. Moore-Ede & C. A. Czeisler (Eds.), Mathematical models of the circadian sleep-wake cycle (pp. 129–158). New York: Raven Press.

    Google Scholar 

  • Daan, S., & Beersma, D. G. M. (1992). A single pacemaker can produce different rates of reentrainment in different overt rhythms. Journal of Sleep Research, 1, 80–83.

    Article  PubMed  Google Scholar 

  • Daan, S., & Berde, C. (1978). Two coupled oscillators: Simulations of the circadian pacemaker in mammalian activity rhythms. Journal of Theoretical Biology, 70, 297–313.

    Article  PubMed  CAS  Google Scholar 

  • Daan, S., Beersma, D. G. M., & Borbély, A. A. (1984). The timing of human sleep: Recovery process gated by a circadian pacemaker. American Journal of Physiology, 246, R161–R178.

    PubMed  CAS  Google Scholar 

  • Daan, S., Beersma, D. G. M., Dijk, D.-J., Äkerstedt, T. A., & Gillberg, M. (1988). Kinetics of an hourglass component involved in the regulation of human sleep and wakefulness. In W. Th. Hekkens, M. G. A. Kerkhof, and W. J. Rietveld (Eds.), Trends in chronobiology (pp. 183–193). Oxford: Pergamon Press.

    Google Scholar 

  • Dantz, B., Edgar, D. M., & Dement, W. C. (1994). Circadian rhythms in narcolepsy: Studies on a 90 minute day. Electroencephalography and Clinical Neurophysiology, 90, 24–35.

    Article  PubMed  CAS  Google Scholar 

  • Deboer, T., Franken, P., & Tobler, I. (1994). Sleep and cortical temperature in the Djungarian hamster under baseline conditions and after sleep deprivation. Journal of Comparative Physiology, 174,145–155.

    PubMed  CAS  Google Scholar 

  • Dement, W. C. (1960). The effects of dream deprivation. Science, 131, 1705–1707.

    Article  PubMed  CAS  Google Scholar 

  • Dement, W., & Greenberg, S. (1966). Changes in total amount of stage four sleep as a function of partial sleep deprivation. Electroencephalography and Clinical Neurophysiology, 20, 523–526.

    Article  PubMed  CAS  Google Scholar 

  • Dement, W., & Kleitman, N. (1957). Cyclic variations in EEG during sleep and their relation to body move-ments, body motility, and dreaming. Electroencephalography and Clinical Neurophysiology, 9, 673–690.

    Article  PubMed  CAS  Google Scholar 

  • Dijk, D.J. (1995). EEG slow-waves and sleep spindles: Windows on the sleeping brain. Behavioral Brain Research, 69, 109–116.

    Article  CAS  Google Scholar 

  • Dijk, D.-J., & Czeisler, C. A. (1993). Body temperature is elevated during the rebound of slow wave sleep following 40-h of sleep deprivation on a constant routine. Journal of Sleep Research, 2, 117–120.

    Article  PubMed  Google Scholar 

  • Dijk, D.J., & Czeisler, C. A. (1994). Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neuroscience Letters, 166, 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Dijk, D.J., & Czeisler, C. A. (1995). Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure and electroencephalographic slow waves and sleep spindle activity in humans. Journal of Neuroscience, 15, 3526–3538.

    PubMed  CAS  Google Scholar 

  • Dijk, D.J., & Daan, S. (1989). Sleep EEG spectral analysis in a diurnal rodent: Eutamias sibiricus. Journal of Comparative Physiology A, 165, 205–215.

    Article  CAS  Google Scholar 

  • Dijk, D. J, Beersma, D. G. M., Sc Daan, S. (1987). EEG power density during nap sleep: Reflection of an hourglass measuring the duration of prior wakefulness. Journal of Biological Rhythms, 2, 207–219.

    Article  PubMed  CAS  Google Scholar 

  • Dijk, D. J., Beersma, D. G. M., Daan, S. (1989). Bright morning light advances the human circadian system without affecting NREM sleep homeostasis. American Journal of Physiology, 256, R106–R111.

    PubMed  CAS  Google Scholar 

  • Dijk, D.J., Brunner, D. P., & Borbély, A. A. (1990a). Time course of EEG power density during long sleep in humans. American Journal of Physiology, 258, R650–R661.

    CAS  Google Scholar 

  • Dijk, D.J., Brunner, D. P., Beersma, D. G. M., & Borbély, A. A. (1990b) Slow wave sleep and electroenceph-alogram power density as a function of prior waking and circadian phase. Sleep, 13, 430–440.

    CAS  Google Scholar 

  • Dijk, D.J., Brunner, D. P., & Borbély, A. A. (1991a). EEG power density during recovery sleep in the morning. Electroencephalography and Clinical Neurophysiology, 78, 203–214.

    Article  CAS  Google Scholar 

  • Dijk, D.J., Cajochen, C., Tobler, I., & Borbély, A. A. (1991b). Sleep extension in humans: Sleep stages, EEG power spectra, and body temperature. Sleep, 14, 294–306.

    CAS  Google Scholar 

  • Dijk, D.J., Duffy, J. F., & Czeisler, C. A. (1992). Circadian and sleep-wake dependent aspects of subjective alertness and cognitive performance. Journal of Sleep Research, 1, 112–117.

    Article  PubMed  CAS  Google Scholar 

  • Dijk, D.J., Hayes, B., & Czeisler, C. A. (1993). Dynamics of electroencephalographic sleep spindles and slow wave activity in men: Effect of sleep deprivation. Brain Research, 626, 190–199.

    Article  PubMed  CAS  Google Scholar 

  • Eastman, C. (1984). Are separate temperature and activity oscillators necessary to explain the phenomena of human circadian rhythms? In M. C. Moore-Ede & C. A. Czeisler (Eds.), Mathematical models of the circadian sleep-wake cycle (pp. 81–103). New York: Raven Press.

    Google Scholar 

  • Edgar, D. M., Dement, W. C., & Fuller, C. A. (1993). Effect of SCN lesions on sleep in squirrel monkeys: Evidence for opponent processes in sleep-wake regulation. Journal of Neuroscience, 13, 1065–1079.

    PubMed  CAS  Google Scholar 

  • Feinberg, I., March, J. D., Floyd, T. C., Jimison, R., Bossom-Demitrack, L., & Katz, P. H. (1985). Homeostatic changes during post-nap sleep maintain baseline levels of delta EEG. Electroencephalography and Clinical Neurophysiology, 61, 134–137.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg I., Maloney, T., & March, J. D. (1992). Precise conservation of nonREM period 1 (nonREMP1) delta across naps and nocturnal sleep: Implications for REM latency and nonREM/REM alternation. Sleep, 15, 400–403.

    PubMed  CAS  Google Scholar 

  • Folkard, S., & ikkerstedt, T. (1987). Towards a model for the prediction of alertness and/or fatigue on different sleep/wake schedules. In A. Oginski, J. Polorski, & J. Rutenfranz (Eds.), Contemporary advances in shiftwork research: Theoretical and practical aspects in the late eighties (pp. 231–240). Krakow, Poland: Medical Academy.

    Google Scholar 

  • Folkard, S., &Ikkerstedt, T. (1989). Towards the prediction of alertness on abnormal sleep/wake schedules. In A. Coblentz (Ed.), Vigilance and performance in automatized systems (pp. 287–296). Dordrecht, The Netherlands: Kluwer.

    Chapter  Google Scholar 

  • Folkard, S., & Àkerstedt, T. (1992). A three-process model of the regulation of alertness-sleepiness. In R.J. Broughton & R. D. Ogilvie (Eds.), Sleep, arousal, and performance (pp. 11–26). Boston: Birkhäuser.

    Google Scholar 

  • Franken, P., Dijk, D.J., Tobler, I., & Borbély, A. A. (1991a). Sleep deprivation in the rat: Effects on electro-encephalogram power spectra, vigilance states, and cortical temperature. American Journal of Physiology, 261, R198–R208.

    CAS  Google Scholar 

  • Franken, P., Tobler, I., & Borbély, A. A. (1991b). Sleep homeostasis in the rat: Simulations of the time course of EEG slow-wave activity. Neuroscience Letters, 130, 141–144.

    Article  CAS  Google Scholar 

  • Franken, P., Tobler, I., & Borbély, A. A. (1992). Sleep and waking have a major effect on the 24-h rhythm of cortical temperature in the rat. Journal of Biological Rhythms, 7, 341–352.

    Article  PubMed  CAS  Google Scholar 

  • Franken, P., Tobler, I., & Borbély, A. A. (1993). Effects of 12-h sleep deprivation and of 12-h cold exposure on sleep regulation and cortical temperature in the rat. Physiology and Behavior, 54, 885–894.

    Article  PubMed  CAS  Google Scholar 

  • Franken, P., Tobler, I., & Borbély, A. A. (1995). Varying the photoperiod in the rat: Profound effect on the 24-h sleep pattern but no effect on sleep homeostasis. American Journal of Physiology, 269, R691–R701.

    PubMed  CAS  Google Scholar 

  • Friedman, L., Bergmann, B. M., & Rechtschaffen, A. (1979). Effects of sleep deprivation on sleepiness, sleep intensity, and subsequent sleep in the rat. Sleep, 1, 369–391.

    PubMed  CAS  Google Scholar 

  • Geering, B. A., Achermann, P., Eggimann, F., & Borbély, A. A. (1993). Period-amplitude and power spectral analysis: A comparison based on all-night sleep EEG recordings. Journal of Sleep Research, 2, 121–129.

    Article  PubMed  Google Scholar 

  • Hanagasioglu, M., & Borbély, A. A. (1982). Effect of voluntary motor activity on sleep in the rat. Behavioral Brain Research, 4, 359–368.

    Article  CAS  Google Scholar 

  • Hirsch, J. C., Fourment, A., & Marc, M. E. (1983). Sleep-related variations of membrane potential in the lateral geniculate body relay neurons of the cat. Brain Research, 259, 308–312.

    Article  PubMed  CAS  Google Scholar 

  • Horne, J. A., & Shackell, B. S. (1987). Slow wave sleep elevations after body heating: Proximity to sleep and effects of aspirin. Sleep, 10, 383–392.

    PubMed  CAS  Google Scholar 

  • Horne, J. A., & Staff, L. H. E. (1983). Exercise and sleep: Body heating effects. Sleeps, 6, 36–46.

    CAS  Google Scholar 

  • Johnson, M. P., Duffy, J. F., Dijk, D.J., Ronda, J. M., Dyal, C. M., & Czeisler, C. A. (1992). Short-term memory, alertness and performance: A reappraisal of their relationship to body temperature. Journal of Sleep Research, 1, 24–29.

    Article  PubMed  CAS  Google Scholar 

  • Jones, H. S., & Oswald, I. (1968). Two cases of healthy insomnia. Electroencephalography and Clinical Neurophysiology, 24, 378–380.

    Article  PubMed  CAS  Google Scholar 

  • Kales, A., Hoedemaker, F. S., Jacobson, A., & Lichtenstein, E. L. (1964).xxx Dream deprivation: An experimental reappraisal Nature, 204, 1337–1338.

    CAS  Google Scholar 

  • Karacan, I., Williams, R. L., Finley, W. W., & Hursch, C. J. (1970). Effects of naps on nocturnal sleep: Influence on the need for stage 1-REM and stage 4 sleep. Biological Psychiatry, 2, 391–399.

    PubMed  CAS  Google Scholar 

  • Kattler, H., Dijk, D.-J., & Borbély, A. A. (1994). Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. Journal of Sleep Research, 3, 159–164.

    Article  PubMed  Google Scholar 

  • Knowles, J. B., MacLean, A. W., Salem, L., Vetere, C., & Couder, M. (1986). xxx Slow-wave sleep in daytime and nocturnal sleep: An estimation of the time course of `Process S.’ Journal of Biological Rhythms, 1, 303–308.

    CAS  Google Scholar 

  • Knowles, J. B., Maclean, A. W., Brunet, D., & Coulter, M. (1990). Nap-induced changes in the time course of Process S. Effects on nocturnal slow wave activity. In J. A. Home (Ed.), Sleep ‘80 (pp. 68–70). Bochum; Germany: Pontenagel Press.

    Google Scholar 

  • Kronauer, R. E. (1984). Modeling principles for human circadian rhythms. In M. C. Moore-Ede & C. A. Czeisler (Eds.), Mathematical models of the circadian sleep-wake cycle (pp. 105–128). New York: Raven Press.

    Google Scholar 

  • Kronauer, R. E. (1987). Temporal subdivision of the circadian cycle. Lectures on Mathematics in the Life Sciences, 19, 63–120.

    Google Scholar 

  • Kronauer, R. E. (1990). A quantitative model for the effects of light on the amplitude and phase of the deep circadian pacemaker, based on human data. In J. A. Home (Ed.), Sleep ‘80 (pp. 306–309). Bochum, Germany: Pontenagel Press.

    Google Scholar 

  • Kronauer, R. E., Czeisler, C. A., Pilato, S. F., Moore-Ede, M. C., & Weitzman, E. D. (1982). Mathematical model of the human circadian system with two interacting oscillators. American Journal of Physiology, 242, R3–R17.

    PubMed  CAS  Google Scholar 

  • Krueger, J. M., & Obál, E (1993). A neuronal group theory of sleep function. Journal of Sleep Research, 2, 63–69.

    Article  PubMed  Google Scholar 

  • Lancel, M., van Riezen, H., & Glatt, A. (1991). Effects of circadian phase and duration of sleep deprivation on sleep and EEG power spectra in the cat. Brain Research, 548, 206–214.

    Article  PubMed  CAS  Google Scholar 

  • Lavie, P. (1986). Ultrashort sleep-waking schedule. III. “Gates” and “forbidden zones” for sleep. Electro-encephalography and Clinical Neurophysiology, 63, 414–425.

    Article  CAS  Google Scholar 

  • Lydic, R., McCarley, R. W., & Hobson, J. A. (1984). Forced activity alters sleep cycle periodicity and dorsal raphe discharge rhythm. American Journal Physiology, 247, R135–R145.

    CAS  Google Scholar 

  • Maron, L., Rechtschaffen, A., & Wolpert, E. A. (1964). Sleep cycle during napping. Archives of General Psychiatry, 11, 503–507.

    Article  PubMed  CAS  Google Scholar 

  • Massaquoi, S., & McCarley, R. W. (1990). Resetting the REM sleep oscillator. In J. A. Home (Ed.), Sleep ‘80 (pp. 301–305). Bochum, Germany: Pontenagel Press.

    Google Scholar 

  • Massaquoi, S., & McCarley, R. W. (1992). Extension of the limit cycle reciprocal interaction model of REM cycle control: An integrated sleep control model. Journal of Sleep Research, 1, 138–143

    Article  PubMed  Google Scholar 

  • McCarley, R. W., & Hobson, J. A. (1975). Neuronal excitability modulation over the sleep cycle: A structural and mathematical model. Science, 189, 58–60.

    Article  PubMed  CAS  Google Scholar 

  • McCarley, R. W., & Massaquoi, S. (1986). A limit cycle mathematical model of the REM sleep oscillator system. American Journal of Physiology, 251, R1011–R1029.

    PubMed  CAS  Google Scholar 

  • McGinty, D., Szymusiak, R., & Thomson, D. (1994). Preoptic/anterior hypothalamic warming increases EEG delta frequency within non-rapid eye movement sleep. Brain Research, 667, 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Mistiberger, R. E., Bergmann, B. M., Waldenar, W., & Rechtschaffen, A. (1983). Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei lesioned rats. Sleep, 6, 217–233.

    Google Scholar 

  • Mistlberger, R., Bergmann, B., & Rechtschaffen, A. (1987). Period-amplitude analysis of rat electroencephalogram: Effects of sleep deprivation and exercise. Sleep, 10, 508–522.

    PubMed  CAS  Google Scholar 

  • Morairty, S. R., Szymusiak, R., Thomson, D., & McGinty, D. J. (1993). Selective increases in non-rapid eye movement sleep following whole body heating in rats. Brain Research, 617, 10–16.

    Article  PubMed  CAS  Google Scholar 

  • Neckelmann, D., & Ursin, R. (1993). Sleep stages and EEG power spectrum in relation to acoustical stimulus arousal threshold in the rat. Sleep, 16, 467–477.

    PubMed  CAS  Google Scholar 

  • Obál, Jr., F., Alfóldi, P., & Rubicsek, G. (1995). Promotion of sleep by heat in young rats. Pflügers Archiv, 430, 729–738.

    Article  PubMed  Google Scholar 

  • Oleksenko, A. I., Mukhametov, L. M., Polyakova, I. G., Supin, A. Y., Sc Kovalzon, V. M. (1992). Unihemispheric sleep deprivation in bottlenose dolphins. Journal of Sleep Research, 1, 40–44.

    Article  PubMed  Google Scholar 

  • Opp, M. R., & Krueger, J. M. (1994). Interleukin-1 is involved in responses to sleep deprivation in the rabbit. Brain Research, 639, 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Pappenheimer, J. R., Koski, G., Fend, V., Karnovsky, M. L., & Krueger, J. (1975). Extraction of sleep-promoting factor S from cerebrospinal fluid and from brains of sleep-deprived animals. Journal of Neurophysiology, 38, 1299–1311.

    PubMed  CAS  Google Scholar 

  • Steriade, M., Jones, E. G., & Llinás, R. R. (1990). Thalamic oscillations and signaling. New York: Wiley. Steriade, M., McCormick, D. A., & Sejnowski, T. J. (1993a). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262, 679–685.

    Google Scholar 

  • Steriade, M., Nuñez, A., & Amzica, F. (1993b). A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: Depolarizing and hyperpolarizing components. Journal of Neuroscience, 13, 3252–3265.

    CAS  Google Scholar 

  • Steriade, M., Contreras, D., & Amzica, E (1994). Synchronized sleep oscillations and their paroxysmal developments. Trends in Neurosciences, 17, 199–208.

    Article  PubMed  CAS  Google Scholar 

  • Strogatz, S. H., Kronauer, R. E., & Czeisler, C. A. (1986). Circadian regulation dominates homeostatic control of sleep length and prior wake length in humans. Sleep, 9, 353–364.

    PubMed  CAS  Google Scholar 

  • Tobler, I. (1985). Deprivation of sleep and rest in vertebrates and invertebrates. In S. Inoue & A. A. Borbély (Eds.), Endogenous sleep substances and sleep regulation (pp. 57–66). Utrecht: VNU Science Press.

    Google Scholar 

  • Tobler, I., & Borbély, A. A. (1986). Sleep EEG in the rat as a function of prior waking. Electroencephalography and Clinical Neurophysiology, 64, 74–76.

    Article  PubMed  CAS  Google Scholar 

  • Tobler, I., & Borbély, A. A. (1990). The effect of 3-h and 6-h sleep deprivation on sleep and EEG spectra of the rat. Behavioral Brain Research, 36, 73–78.

    Article  CAS  Google Scholar 

  • Tobler, I., & Deboer, T. (1994). Sleep, sleep regulation and cortical temperature in a photoperiodic rodent. Journal of Sleep Research, 3(Supplement 1), 254.

    Google Scholar 

  • Tobler, I., & Franken, P. (1993). Sleep homeostasis in the guinea pig: Similar response to sleep deprivation in the light and dark period. Neuroscience Letters, 164, 105–108.

    Article  PubMed  CAS  Google Scholar 

  • Tobler, I., &Jaggi, K. (1987). Sleep and EEG spectra in the Syrian hamster (Mesocricetus auratus) under baseline conditions and following sleep deprivation. Journal of Comparative Physiology A, 161, 449–459.

    Article  CAS  Google Scholar 

  • Tobler, I., Sc Scherschlicht, R. (1990). Sleep and EEG slow-wave activity in the domestic cat: Effect of sleep deprivation. Behavioral Brain Research, 37, 109–118.

    Article  CAS  Google Scholar 

  • Tobler, I., Munson, R., Ursin, R., Ursin, H., & Borbély, A. A. (1983a). The effect of sleep deprivation and recovery sleep on plasma corticosterone in the rat. Neuroscience Letters, 35, 297–300.

    Article  CAS  Google Scholar 

  • Tobler, I., Borbély, A. A., & Groos, G. (1983b). The effect of sleep deprivation on sleep in rats with suprachiasmatic lesions. Neuroscience Letters, 42, 49–54.

    Article  CAS  Google Scholar 

  • Tobler, I., Franken, P., & Scherschlicht, R. (1990a). Sleep and EEG spectra in the rabbit under baseline conditions and following sleep deprivation. Physiology and Behavior, 48, 121–129.

    Article  CAS  Google Scholar 

  • Tobler, I., Dijk, D.-J., & Borbély, A. A. (1990b). Comparative aspects of sleep regulation in three species. In J. A. Home (Ed.), Sleep ‘80 (pp. 349–351). Bochum, Germany: Pontenagel Press.

    Google Scholar 

  • Tobler, I., Franken, P., Trachsel, L., & Borbély, A. A. (1992). Models of sleep regulation in mammals. Journal of Sleep Research, 1, 125–127.

    Article  PubMed  Google Scholar 

  • Tobler, I., Franken, P., & Jaggi, K (1993). Vigilance states, EEG spectra and cortical temperature in the guinea pig. American Journal of Physiology, 264, R1125–R1132.

    PubMed  CAS  Google Scholar 

  • Tobler, I., Franken, P., Gao, B., Jaggi, K, & Borbély, A. A. (1994). Sleep deprivation in the rat at different ambient temperatures: Effect on sleep, EEG spectra and brain temperature. Archives Italienne de Biologie, 132, 39–52.

    CAS  Google Scholar 

  • Trachsel, L., Tobler, I., & Borbély, A. A. (1986). Sleep regulation in rats: effects of sleep deprivation, light, and circadian phase. American Journal of Physiology, 251, R1037–R1044.

    PubMed  CAS  Google Scholar 

  • Trachsel, L., Tobler, I., Achermann, P., & Borbély, A. A. (1991). Sleep continuity and the REM-nonREM cycle in the rat under baseline conditions and after sleep deprivation. Physiology and Behavior, 49, 575–580.

    Article  PubMed  CAS  Google Scholar 

  • Trachsel, L., Edgar, D. M., Seidel, W. F., Heller, W. C., & Dement, W. C. (1992). Sleep homeostasis in suprachiasmatic nuclei-lesioned rats: Effects of sleep deprivation and triazolam administration. Brain Research, 589, 253–261

    Article  PubMed  CAS  Google Scholar 

  • Ursin, R., Moses, J., Naitoh, P., & Johnson, L. C. (1983). REM-NREM cycle in cat may be sleep-dependent. Sleep, 6, 1–9.

    PubMed  CAS  Google Scholar 

  • Webb, W. B., & Agnew, H. W. (1971). Stage 4 sleep: Influence on time course variables. Science, 174,1354–1356.

    Article  PubMed  CAS  Google Scholar 

  • Webb, W. B., & Agnew, H. W. (1975). Sleep efficiency for sleep-wake cycles of varied length. Psychophysiology, 12, 637–641.

    Article  PubMed  CAS  Google Scholar 

  • Webb, W. B., Sc Friel, J. (1970). Characteristics of “natural” long and short sleepers: A preliminary report. Psychological Reports, 27, 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Wehr, T. A., Moul, D. E., Barbato, G., Giesen, H. A., Seidel, J. A., Barker, C., & Bender, C. (1993). Conservation of photoperiod-responsive mechanisms in humans. American journal of Physiology, 265, R846–R857.

    PubMed  CAS  Google Scholar 

  • Weitzman, E. D., Nogeire, C., Perlow, M., Fukushima, D., Sassin, J., McGregor, P., Gallagher, T. E, & Hellman, L. (1974). Effects of prolonged 3-hour sleep-wake cycle on sleep stages, plasma cortisol, growth hormone and body temperature in man. Journal of Clinical Endocrinology and Metabolism, 38, 1018–1030.

    Article  PubMed  CAS  Google Scholar 

  • Weitzman, E. D., Czeisler, C. A., Zimmermann, J. C., & Ronda, J. M. (1980). Timing of REM and stages 3 + 4 sleep during temporal isolation in man. Sleep, 2, 391–407.

    PubMed  CAS  Google Scholar 

  • Welsh, D. K., Logothetis, D. E., Meister, M., & Reppert, S. M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron, 14, 697–706.

    Article  PubMed  CAS  Google Scholar 

  • Werth, E., Dijk, D.-J., Achermann, P., & Borbély, A. A. (1996). Dynamics of the sleep EEG after n early evening nap: Experimental data and simulations. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 40(3), R501–R510.

    Google Scholar 

  • Weyer, R. A. (1979). The circadian system of man. Results of experiments under temporal isolation. New York: Springer-Verlag.

    Google Scholar 

  • Weyer, R. A. (1984). Toward a mathematical model of circadian rhythmicity. In M. C. Moore-Ede & C. A. Czeisler (Eds.), Mathematical models of the circadian sleep-wake cycle (pp. 17–79). New York: Raven Press.

    Google Scholar 

  • Williams, H. L., Hammack, J. T., Daly, R. L., Dement, W. C., & Lubin, A. (1964). Responses to auditory stimulation, sleep loss and the EEG stages of sleep. Electroencephalography and Clinical Neurophysiology, 16, 269–279.

    Article  PubMed  CAS  Google Scholar 

  • Zulley, J. (1979). Der Einfluss von Zeitgebern auf den Schlaf des Menschen. Frankfurt: Fischer.

    Google Scholar 

  • Zulley, J. (1990). Day and night sleep: The bedrest condition. In J. Horne (Ed.), Sleep ‘80 (pp. 319–323). Bochum, Germany: Pontenagel Press.

    Google Scholar 

  • Zulley, J., & Weyer, R. A. (1982). Interaction between the sleep-wake cycle and the rhythm of rectal temperature. In J. Aschoff, S. Daan, & G. Groos (Eds.), Vertebrate circadian systems: Structure and physiology (pp. 253–261). Berlin: Springer.

    Chapter  Google Scholar 

  • Zulley, J., Weyer, R., & Aschoff, J. (1981). The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflügers Archiv, 391, 314–318.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borbély, A.A., Dijk, DJ., Achermann, P., Tobler, I. (2001). Processes Underlying the Regulation of the Sleep-Wake Cycle. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1201-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5438-3

  • Online ISBN: 978-1-4615-1201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics