Aging of the Mammalian Circadian System

  • Fred W. Turek
  • Kathryn Scarbrough
  • Planen Penev
  • Susan Labyak
  • verónica S. Valentinuzzi
  • Olivier Van Reeth
Part of the Handbook of Behavioral Neurobiology book series (HBNE, volume 12)


Numerous studies have demonstrated that as animals reach advanced age for the species, there are pronounced changes in the expression of diverse circadian rhythms. Many of the observed changes may reflect an overall deterioration of the health of the organism. On the other hand, changes in the circadian system may not simply reflect such deterioration, but may represent one of the underlying causes for the negative health effects associated with advanced age. Most studies of the effects of advanced age on the circadian system have been carried out on rodents and humans. Since Chapter 22 of this volume reviews the literature on the effects of aging on the human circadian system, this chapter will focus primarily on studies of rodents, particularly the best-studied animals in this regard: laboratory rats, mice, and golden (Syrian) hamsters. After first describing the multitude of changes that have been observed in the aging circadian system of rodents, this review will [1] examine the underlying physiologic mechanisms that lead to these changes, [2] provide an overview of attempts to attenuate or reverse age-related effects on circadian rhythmicity, and [3] speculate on the functional significance of such changes.


Circadian Rhythm Circadian Clock Golden Hamster Suprachiasmatic Nucleus Circadian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arendt, J. (1994). The pineal gland: Basic physiology and clinical implications. In L. J. DeGroot (Ed.), Endocrinology (pp. 432–444). Philadelphia: Saunders.Google Scholar
  2. Armstrong, S. M., & Redman, J. R. (1991). Melatonin: A chronobiotic with anti-aging properties? Medical Hypotheses, 34, 300–309.PubMedGoogle Scholar
  3. Aschoff, J., Fatranska, M., Giedke, H., Doerr, P., Stamm, D., & Wisser, H. (1971). Human circadian rhythms in continuous darkness: Entrainment by social cues. Science, 171, 213–215.PubMedGoogle Scholar
  4. Bahr, B. A., Godshall, A. C., Hall, R. A., & Lynch, G. (1992). Mouse telencephalon exhibits an age-related decrease in glutamate (AMPA) receptors but no change in nerve terminal markers. Brain Research, 589, 320–326.PubMedGoogle Scholar
  5. Brock, M. A. (1991). Chronobiology and aging. Journal of the American Geriatrics Society, 39, 74–91.PubMedGoogle Scholar
  6. Cai, A., Lehman, M. N., Lloyd, J. M., & Wise, P. M. (1997). Transplantation of fetal suprachiasmatic nuclei into middle-aged rats restores diurnal Fos expression in host. American Journal of Physiology, 272, R422–R428.PubMedGoogle Scholar
  7. Cao, V. H., Edgar, D. M., Heller, H. C., Dement, W. C., & Miller, J. D. (1995). Basal and phase-shifted neuronal rhythms in the aged SCN in vitro. Society for Neuroscience, Abstracts, 21, 1235.Google Scholar
  8. Chee, C. A., Roozendaal, B., Swaab, D. F., Goudsmit, E., & Mirmiran, M. (1988). Vasoactive intestinal polypeptide neuron changes in the senile rat suprachiasmatic nucleus. Neurobiology of Aging, 9, 307–312.PubMedGoogle Scholar
  9. Czeisler, C. A., Kronauer, R. E., Allan, J. S., Duffy, J. F., Jewett, M. E., Brown, E. N., & Ronda, J. M. (1989). Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science, 244, 1328–1333.PubMedGoogle Scholar
  10. Czeisler, C. A., Chiasera, A. J., & Duffy, J. F. (1991). Research on sleep, circadian rhythms and aging: Applications to manned spaceflight. Experimental Gerontology, 26, 217–232.PubMedGoogle Scholar
  11. Czeisler, C. A., Kronauer, R. E., & Allan, J S (1992). Assessment of modification of a subject’s endogenous circadian cycle. U.S. Patent No. 5,163–426.Google Scholar
  12. Davidoff, M. S., & Lolova, I. S. (1991). Age-related changes in the serotonin immunoreactivity in the telencephalon and diencephalon of rats. Journal für Hirnforschung, 32, 745–753.PubMedGoogle Scholar
  13. Davis, F. C., & Menaker, M. (1980). Hamsters through time’s window: Temporal structure of hamster locomotor rhythmicity. American Journal of Physiology, 239, R149–R155.PubMedGoogle Scholar
  14. Dawson, D., & Encel, N. (1993). Melatonin and sleep in humans Journal of Pineal Research, 15, 1–12.PubMedGoogle Scholar
  15. Dollins, A. B., Zhdanova, I. V., Wurtman, R J, Lynch, H. J., & Deng, M. H. (1994). Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance. Proceedings of the National Academy of Sciences of the USA, 91, 1824–1828.Google Scholar
  16. Dubocovich, M. L., Benloucif, S., & Masana, M. I. (1996). Melatonin receptors in the mammalian suprachiasmatic nucleus. Behavioural Brain Research, 73, 141–147.PubMedGoogle Scholar
  17. Duncan, M. J., & Purvis, C. C. (1994). Effects of aging on photoperiodic responsiveness and specific 2-[1251]-iodomelatonin binding sites in the pars tuberalis and suprachiasmatic nuclei of Siberian hamsters. Journal of Pineal Research, 16, 184–187.PubMedGoogle Scholar
  18. Ebihara, S., Marks, T., Hudson, D.J., Sc Menaker, M. (1986). Genetic control of melatonin synthesis in the pineal gland of the mouse. Science, 231, 491–493.PubMedGoogle Scholar
  19. Grad, B. R., & Rozencwaig, R. (1993). The role of melatonin and serotonin in aging: Update. Psychoneuroendocrinology, 18, 283–295.PubMedGoogle Scholar
  20. Halberg, J., Halberg, E., Regal, P., & Halberg, F. (1981). Changes with age characterize circadian rhythm in telemetered core temperature of stroke prone rats. Journal of Gerontology, 36, 28–30.PubMedGoogle Scholar
  21. Hofman, M. A., & Swaab, D. F. (1994). Alterations in circadian rhythmicity of the vasopressin-producing neurons of the human suprachiasmatic nucleus (SCN) with aging. Brain Research, 651, 134–142.PubMedGoogle Scholar
  22. Hofman, M., & Swaab, D. (1995). Influence of aging on the seasonal rhythm of the vasopressin-expressing neurons in the human suprachiasmatic nucleus. Neurobiology of Aging, 16, 965–971.PubMedGoogle Scholar
  23. Humbert, W., & Pevet, P. (1994). The decrease of pineal melatonin production with age. Annals of the New York Academy of Sciences, 719, 43–63.PubMedGoogle Scholar
  24. Hurd, M. W., Zimmer, K. A., Lehman, M. N., & Ralph, M. R. (1995). Circadian locomotor rhythms in aged hamsters following suprachiasmatic transplant. American Journal of Physiology, 269, R958–R968.PubMedGoogle Scholar
  25. Illnerova, H. (1991). The suprachiasmatic nucleus and rhythmic pineal melatonin production. In D. C. Klein, R. Y. Moore, & S. M. Reppert (Eds.), Suprachiasmatic nucleus-The mind’s clock (pp. 197–216). New York: Oxford University Press.Google Scholar
  26. King, D. P., Zhao, Y., Sangoram, A. M., Wilsbacher, L. D., Tanaka, M., Antoch, M. P., Steeves, T. D. L., Vitaterna, M. H., Kornhauser, J. M., Lowery, P. L., Turek, F. W., & Takahashi, J. S. (1997). Positional cloning of the mouse circadian Clock gene. Cell, 89, 641–653.PubMedGoogle Scholar
  27. Kornhauser, J. M., Nelson, D. E., Mayo, K. E., & Takahashi, J. S. (1990). Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron, 5, 127–134.PubMedGoogle Scholar
  28. Koster-van Hoffen, G. C., Mirmiran, M., Bos, N. P., Witting, W., Delagrange, P., & Guardiola-Lemaitre, B. (1993). Effects of a novel melatonin analog on circadian rhythms of body temperature and activity in young, middle-aged, and old rats. Neurobiology of Aging, 14, 565–569.PubMedGoogle Scholar
  29. Laartz, B., Losee-Olson, S., Ge, Y.-R., & Turek, F. W. (1994). Diurnal, photoperiodic and age-related changes in plasma growth hormone levels in the golden hamster. Journal of Biological Rhythms, 9, 111–123.PubMedGoogle Scholar
  30. Labyak, S. E., Zee, P. C., Wallen, E. P., & Turek, F. W. (1996). An evaluation of circadian locomotor activity in young, middle aged, and old golden hamsters. Society for Research on Biological Rhythms, Abstracts, 173, 113.Google Scholar
  31. Labyak, S. E., Turek, F. W., Wallen, E. P., & Zee, P. C. (1998). The effects of bright light on age-related changes in the locomotor activity of Syrian hamsters. American Journal of Physiology, 274, R830–R839.PubMedGoogle Scholar
  32. Lavie, P. (1997). Melatonin: Role in gating nocturnal rise in sleep propensity. Journal of Biological Rhythms,12, 657–665.PubMedGoogle Scholar
  33. Lehman, M. N., Silver, R, Gladstone, W. R., Kahn, R. M., Gibson, M., & Bittman, E. L. (1987). Circadian rhythmicity restored by neural transplant: Immunocytochemical characterization of the graft and its integration with the host brain. Journal of Neuroscience, 7, 1626–1638.PubMedGoogle Scholar
  34. Martin, J. R., Fuchs, A., Bender, R., & Harting, J. (1985). Altered light-dark activity difference with aging in two rat strains. Journal of Gerontology, 44, 2–7.Google Scholar
  35. Martin, P., & Bateson, P. (1997). Measuring behaviour: An introductory guide. Cambridge: Cambridge University Press.Google Scholar
  36. McArthur, A. J., Gillette, M. U., & Prosser, R. A. (1991). Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. Brain Research, 565, 158–161.PubMedGoogle Scholar
  37. Meites, J. (1991). Role of hypothalamic catecholamines in aging processes. Acta Endocrinologica, 125, 98–103.PubMedGoogle Scholar
  38. Menaker, M., & Refinetti, R. (1992). The tau mutation in golden hamsters. In M. Young (Ed.), Molecular genetics of biological rhythms (pp. 255–269). New York: Marcel Dekker.Google Scholar
  39. Miller, A. E., & Riegle, G. D. (1982). Temporal patterns of serum luteinizing hormone and testosterone and endocrine response to luteinizing hormone in aging male rats. Journal of Gerontology, 37, 522–528.PubMedGoogle Scholar
  40. Miller, J. D., Morin, L. P., Schwartz, W. J., & Moore, R Y. (1996). New insights into the mammalian circadian clock. Sleep, 19, 641–667.PubMedGoogle Scholar
  41. Monk, T. H., Buysse, D. J., Reynolds, C. E I., & Kupfer, D. J. (1993). Inducing jet lag in older people: Adjusting to a 6-hour phase advance in routine. Experimental Gerontology, 28, 119–133.PubMedGoogle Scholar
  42. Moore, R. Y. (1996). Neural control of the pineal gland. Behavioural Brain Research, 73, 125–130.Google Scholar
  43. Morgan, P. J., Howell, H. E., & Helliwell, R. (1994). Melatonin receptors: Localization, molecular pharmacology and physiological significance. Neurochemistry International, 24, 101–146.PubMedGoogle Scholar
  44. Morin, L. P. (1988). Age-related changes in hamster circadian period, entrainment and rhythm splitting.Journal of Biological Rhythms, 3, 237–248.Google Scholar
  45. Morin, L. P., & Blanchard, J. (1991). Depletion of brain serotonin by 5,7-DHT modifies hamster circadian rhythm response to light. Brain Research, 566, 173–185.PubMedGoogle Scholar
  46. Mosko, S. S., Erickson, G. F., & Moore, R. Y. (1980). Dampened circadian rhythms in reproductively senescent female rats. Behavioral Neural Biology, 28, 1–14.Google Scholar
  47. Mrosovsky, N. (1996). Locomotor activity and non-photic influences on circadian clocks. Biological Reviews of the Cambridge Philosophical Society, 71, 343–372.PubMedGoogle Scholar
  48. Mrosovsky, N., Reebs, S. G., Honrado, G. I., & Salmon, P. A. (1989). Behavioural entrainment of circadian rhythms. Experientia, 45, 696–702.PubMedGoogle Scholar
  49. Myers, B. L., & Badia, P. (1995). Changes in circadian rhythms and sleep quality with aging: Mechanisms and interventions. Neuroscience and Biobehavioral Reviews, 19, 553–571.PubMedGoogle Scholar
  50. Nelson, W., & Halberg, E (1986). Schedule-shifts, circadian rhythms and lifespan of freely-feeding and meal-fed mice. Physiology and Behavior, 38, 781.PubMedGoogle Scholar
  51. Nicolau, G. Y., & Milcu, S. (1977). Circadian rhythm of corticosterone and nucleic acids in the rat adrenals in relation to age. Chronobiologia, 4, 136.Google Scholar
  52. Penev, P. D., Turek, E W., & Zee, P. C. (1993). Monoamine depletion alters the entrainment and the response to light of the circadian activity rhythm in hamsters. Brain Research, 612, 156–164.PubMedGoogle Scholar
  53. Penev, P. D., Zee, P. C., & Turek, F. W. (1994). Reserpine abolishes the phase-shifting effect of triazolam on locomotor activity rhythms of golden hamsters. Brain Research, 637, 255–261.PubMedGoogle Scholar
  54. Penev, P. D., Zee, P. C., Wallen, E. P., & Turek, F. W. (1995). Aging alters the phase-resetting properties of a serotonin agonist on hamster circadian rhythmicity. American Journal of Physiology, 268, R293—R298.PubMedGoogle Scholar
  55. Penev, P. D., Turek, F. W., Wallen, E. P., & Zee, P. C. (1997a). Aging alters the serotonergic modulation of light-induced phase advances in golden hamsters. American Journal of Physiology, 272, R509—R513.PubMedGoogle Scholar
  56. Penev, P. D., Zee, P. C., & Turek, E W. (1997b). Quantitative analysis of the age-related fragmentation of hamster 24-h activity rhythms. American Journal of Physiology, 273, R2132—R2137.PubMedGoogle Scholar
  57. Peng, M. T, & Rang, M. (1984). Circadian rhythms and patterns of running-wheel activity, feeding and drinking behaviors of old male rats. Physiology and Behavior, 33, 615–620.PubMedGoogle Scholar
  58. Peng, M. T., Jiang, M.J., & Hsu, H. K. (1980). Changes in running-wheel activity, eating and drinking and their day/night distribution throughout the life span of the rat. Journal of Gerontology, 35, 339–347.PubMedGoogle Scholar
  59. Pierpaoli, W., & Regelson, W. (1994). Pineal control of aging: Effect of melatonin and pineal grafting on aging mice. Proceedings of the National Academy of Sciences of the USA, 94, 787–791.Google Scholar
  60. Pittendrigh, C. S. (1974). Circadian oscillations in cells and the circadian organization of multicellular systems. In E C. Schmitt & E G. Worden (Eds.), The neurosciences, third study program (pp. 437–458). Cambridge, MA: MIT Press.Google Scholar
  61. Pittendrigh, C. S., & Daan, S. (1974). Circadian oscillations in rodents: A systematic increase of their frequency with age. Science, 186, 548–550.PubMedGoogle Scholar
  62. Pittendrigh, C. S, & Daan, S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. Journal of Comparative Physiology, 106, 253–266.Google Scholar
  63. Pittendrigh, C. S., & Minis, D. H. (1972). Circadian systems: Longevity as a function of circadian resonance in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 69, 1537.PubMedGoogle Scholar
  64. Possidente, B., McEldowney, S., & Pabon, A. (1995). Aging lengthens circadian period of wheel-running activity in C57BL mice. Physiology and Behavior, 57, 575–579.PubMedGoogle Scholar
  65. Quay, W. B. (1972). Pineal homeostatic regulation of shifts in the circadian activity rhythm during maturation and aging. Transactions of the New York Academy of Sciences, 34, 239–254.PubMedGoogle Scholar
  66. Ralph, M. R., & Menaker, M. (1988). A mutation of the circadian system in golden hamster. Science, 241,1225–1227.PubMedGoogle Scholar
  67. Redman, J., Armstrong, S., & Ng, K. T. (1983). Free-running activity rhythms in the rat: Entrainment by melatonin. Science, 219, 1089–1091.PubMedGoogle Scholar
  68. Reiter, R. J. (1992). The aging pineal gland and its physiological consequences. Bioessays, 14, 169–175.PubMedGoogle Scholar
  69. Reiter, R. J. (1995). The pineal gland and melatonin in relation to aging: A summary of the theories and the data. Experimental Gerontology, 30, 199–212.PubMedGoogle Scholar
  70. Reiter, R.J., Craft, C. M., Johnson, J. E., Jr., King, T S., Richardson, B. A., Vaughan, G. M., & Vaughan, M. K. (1981). Age associated reduction in nocturnal pineal melatonin levels in female rats. Endocrinology, 109, 1295–1297.PubMedGoogle Scholar
  71. Reiter, R.J., Tan, D. X., Poeggeler, B., Menendez-Pelaez, A., Chen, L. D., & Saarela, S. (1994). Melatonin as a free radical scavenger: Implications for aging and age-related diseases. Annals of the New York Academy of Sciences, 719, 1–12.PubMedGoogle Scholar
  72. Reppert, S. M., & Weaver, D. R. (1995). Melatonin madness. Cell, 83, 1059–1062.PubMedGoogle Scholar
  73. Reynolds, C. E, III, Jennings, J. R., Hoch, C. C., Monk, T H., Berman, S. R., Hall, F. T, Matzzie, J. V., Buysse, D. J., & Kupfer, D. J. (1991). Daytime sleepiness in the healthy “old old”: A comparison with young adults. Journal of the American Geriatrics Society, 39, 957–962.PubMedGoogle Scholar
  74. Richardson, G. S. (1990). Circadian rhythms and aging. In E. L. Schneider &J. W. Rowe (Eds.), Handbook of the biology of aging (pp. 275–305). San Diego, CA: Academic Press.Google Scholar
  75. Roozendaal, B., Van Gool, W. A., Swaab, D. F., Hoogendyk, J. E., & Mirmirian, M. (1987). Changes in vasopressin cells of the rat suprachiasmatic nucleus with aging. Brain Research, 409, 259–264.PubMedGoogle Scholar
  76. Rosenberg, R. S., Zepelin, H., & Rechtschaffen, A. (1979). Sleep in young and old rats. journal of Gerontology, 34, 525–532.PubMedGoogle Scholar
  77. Rosenberg, R. S., Winter, J., & Rechtschaffen, A. (1980). Effects of light cycle phase reversal on sleep rhythms of young and old rats. Sleep Research, 9, 105.Google Scholar
  78. Rosenberg, R. S., Zee, P. C., & Turek, F. W. (1991). Phase response curves to light in young and old hamsters. American journal of Physiology, 261, R491–R495.PubMedGoogle Scholar
  79. Rusak, B., & Bina, K. G. (1990). Neurotransmitters in the mammalian circadian system. Annual Review of Neuroscience, 13, 387–401.PubMedGoogle Scholar
  80. Sacher, G. A, & Duffy, P. H. (1978). Age changes in rhythms of energy metabolism, activity and body core temperature in Mus musculus and Peromyscus. In H. V. Samis & S. Copobianco (Eds.), Aging and biological rhythms (pp. 105–124). New York: Plenum Press.Google Scholar
  81. Sack, R. L., Lewy, A. J., Blood, M. L., & Stevenson, J. (1991). Melatonin administration to blind people: Phase advances and entrainment. journal of Biological Rhythms, 6, 249–261.PubMedGoogle Scholar
  82. Saint Paul, U. V. (1978). Longevity among blowflies Phormia terraenovae R.D. kept in non-24 hour light-dark cycles. journal of Comparative Physiology, 127, 191.Google Scholar
  83. Satinoff, E., Sc Li, H. (1996). Fetal tissue containing the suprachiasmatic nucleus restores circadian rhythms in old rats. Society for Research on Biological Rhythms, Abstracts, 110, 82.Google Scholar
  84. Satinoff, E., Li, H., Tcheng, T. K, Liu, C., McArthur, A. J., Medanic, M., & Gillette, M. U. (1993). Do the suprachiasmitc nuclei oscillate in old rats as they do in young ones? American journal of Physiology, 265, R1216–R1222.PubMedGoogle Scholar
  85. Scarbrough, K., & Turek, F. W. (1996). Quantitative differences in the circadian rhythm of locomotor activity and vasopressin and vasoactive intestinal peptide gene expression in the suprachiasmatic nucleus of tau mutant compared to wildtype hamsters. Brain Research, 736, 251–259.PubMedGoogle Scholar
  86. Scarbrough, K, Losee-Olson, S., Wallen, E. P., & Turek, F. W. (1997). Aging and photoperiod effect on entrainment and quantitative aspects of locomotor behavior in Syrian hamsters. American journal of Physiology, 272, R1219–R1225.PubMedGoogle Scholar
  87. Schmid, H. A. (1993). Decreased melatonin biosynthesis, calcium flux, pineal gland calcification and aging: A hypothetical framework. Gerontology, 39, 189–199.PubMedGoogle Scholar
  88. Sheng, M., McFadden, G., & Greenberg, M. E. (1990). Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron, 4, 571–582.PubMedGoogle Scholar
  89. Shimomura, K, & Menaker, M. (1994). Light-induced phase shifts in tau mutant hamsters. Journal of Biological Rhythms, 9, 97–110.PubMedGoogle Scholar
  90. Silver, R., LeSauter, J., Tresco, P. A., & Lehman, M. N. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature, 382, 810–813.PubMedGoogle Scholar
  91. Slater, P. J. B., & Lester, N. P. (1982). Minimising errors in splitting behaviour into bouts. Behaviour, 79,153–162.Google Scholar
  92. Smale, L., Michels, K. M., Moore, R. Y., & Morin, L. P. (1990). Destruction of the hamster serotoninergic system by 5,7-DHT: Effects on circadian rhythm phase, entrainment and response to triazolam. Brain Research, 515, 9–19.PubMedGoogle Scholar
  93. Smith, D. O. (1988). Cellular and molecular correlates of aging in the nervous system. Experimental Gerontology, 23, 399–412.PubMedGoogle Scholar
  94. Sumova, A., Maywood, E. S., Selvage, D., Ebling, F. J., & Hastings, M. (1996). Serotonergic antagonists impair arousal-induced phase shifts of the circadian system of the Syrian hamster. Brain Research, 709, 88–96.PubMedGoogle Scholar
  95. Sutin, E. L., Dement, W. C., Heller, H. C., & Kilduff, T. S. (1993). Light-induced gene expression in the suprachiasmatic nucleus of young and aging rats. Neurobiology of Aging, 14, 441–446.PubMedGoogle Scholar
  96. Swaab, D. F., Fisser, B., Kamphorst, W., & Troust, D. (1988). The human suprachiasmatic nucleus: Neuropeptide changes in senium and Alzheimer’s disease. Basic and Applied Histochemistry, 32, 43–54.PubMedGoogle Scholar
  97. Tang, F., Hadjiconstantinov, M., & Pang, S. F. (1985). Aging and diurnal rhythms of pineal serotonin, 5-hydroxy-indoleacetic acid, norepinephrine, dopamine and serum melatonin in the rat. Neuroendocrinology, 40, 160–164.PubMedGoogle Scholar
  98. Tenover, J. S., Matsumoto, A. M., Clifton, D. K, & Bremner, W. J. (1988). Age-related alterations in the circadian rhythm of pulsatile luteinizing hormone and testosterone secretion in healthy men. Journal of Gerontology, 43, 163–169.Google Scholar
  99. Turek, F. W. (1987). Pharmacological probes of the mammalian circadian clock: Use of the phase response curve approach. Trends in Pharmacological Science, 8, 212–217.Google Scholar
  100. Turek, E W. (1991). Introduction: Chapter IV, circadian SCN outputs. In D. C. Klein, R. Y. Moore, & S. M. Reppert (Eds.), Suprachiasmatic nucleus: The mind’s clock (pp. 191). New York: Oxford University Press.Google Scholar
  101. Turek, E W. (1996). Melatonin hype hard to swallow. Nature, 379, 295–296.PubMedGoogle Scholar
  102. Turek, E W., & Gzeisler, C. A. (1998). Role of melatonin in the regulation of sleep. In F. W. Turek & P. C. Zee (Eds.), Neurobiology of sleep and circadian rhythms (pp. 181–195). New York: Marcel Dekker.Google Scholar
  103. Turek, F. W., Pinto, L., Vitaterna, M., Penev, P., Zee, P. C., & Takahashi, J. S. (1995). Pharmacological and genetic approaches for the study of circadian rhythms in mammals. Frontiers in Neuroendocrinology, 16, 191–223.PubMedGoogle Scholar
  104. Valentinuzzi, V. S., Scarbrough, K, Takahashi, J. S., & Turek, E W. (1997). Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. American, journal of Physiology, 273, R1957–121964.Google Scholar
  105. Van Cauter, E., & Plat, L. (1996). Physiology of growth hormone secretion during sleep. Journal of Pediatrics, 128, S32–S37.PubMedGoogle Scholar
  106. Van der Woude, P. F., Goudsmith, E., Wierda, M., Purba, J. S., Hofman, M. A., Bogte, H., & Swaab, D. E (1995). No vasopressin cell loss in the human hypothalamus in aging and Alzheimer’s disease. Neurobiology of Aging, 16, 11–18.PubMedGoogle Scholar
  107. Van Gool, W. A., & Mirmiran, M. (1986). Effects of aging and housing in an enriched environment upon sleep-wake patterns in rats. Sleep, 9, 335–347.PubMedGoogle Scholar
  108. Van Gool, W. A., Witting, W., & Mirmiran, M. (1987). Age-related changes in circadian sleep-wakefulness rhythms in male rats isolated from time cues. Brain Research, 413, 384–387.PubMedGoogle Scholar
  109. Van Luijtelaar, M. G. P. A., Tonnaer, J. A. D. M., & Steinbusch, H. W. M. (1989). Similarities between aberrant serotonergic fibers in the aged and 5,7-DHT denervated young adult rat brain. Experimental Brain Research, 78, 81–89.Google Scholar
  110. Van Reeth, O., Zhang, Y., Zee, P. C., & Turek, E W. (1992). Aging alters feedback effects of the activity-rest cycle on the circadian clock. American Journal of Physiology, 263, R981–R986.PubMedGoogle Scholar
  111. Van Reeth, O., Zhang, Y., Reddy, A., Zee, P. C., & Turek, E W. (1993). Aging alters the entraining effects of an activity-inducing stimulus on the circadian clock. Brain Research, 607, 286–292.PubMedGoogle Scholar
  112. Van Reeth, O., Sturis, J., Bryne, M. M., Blackman, J. D., L’Hermite-Balériaux, M., Leproult, R., Oliner, C., Refetoff, S., Turek, E W., & Van Canter, E. (1994). Nocturnal exercise phase-delays the circadian rhythms of melatonin and thyrotropin secretion in normal men. American Journal of Physiology, 266, E964–E974.PubMedGoogle Scholar
  113. Viswanathan, N., & Davis, E C. (1995). Suprachiasmatic nucleus grafts restore circadian function in aged hamsters. Brain Research, 686, 10–16.PubMedGoogle Scholar
  114. Vitaterna, M. H., King, D. P., Chang, A. M., Kornhauser, J. M., Lowrey, P. L., McDonald, J. D., Dove, W. E, Pinto, L. H., Turek, E W., & Takahashi, J. S. (1994). Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science, 264, 719–725.PubMedGoogle Scholar
  115. Vitaterna, M. H., Chang, A.M., King, D. P., Pinto, L. H., Turek, E W., & Takahashi, J. S. (1996). Heterozygosity at the clock locus alters phase response curves to light in mice. Society for Research on Biological Rhythms, Abstracts, 200, 127.Google Scholar
  116. Wehr, T. A. (1991). The durations of human melatonin secretion and sleep respond to changes in day length (photoperiod). Journal of Clinical Endocrinology and Metabolism, 73, 1276–1280.PubMedGoogle Scholar
  117. Wehr, T. A., Moul, D. E., Barbato, G., Giesen, H. A., Seidel, J. A., Barker, C., 8e Bender, C. (1993). Conservation of photoperiod-responsive mechanisms in humans. American Journal of Physiology, 265, R846–R857.PubMedGoogle Scholar
  118. Weiland, N. G., & Wise, P. M. (1990). Aging progressively decreases the densities and alters the diurnal rhythms of alpha-1 adrenergic receptors in selected hypothalamic regions. Endocrinology, 126, 2392–2397.PubMedGoogle Scholar
  119. Welsh, D. K., Richardson, G. S., & Dement, W. C. (1986). Effect of age on the circadian pattern of sleep and wakefulness in the mouse. Journal of Gerontology, 41, 579–586.PubMedGoogle Scholar
  120. Whealin, J. M., Burwell, R. D., & Gallagher, M. (1993). The effects of aging on diurnal water intake and melatonin binding in the suprachiasmatic nucleus. Neuroscience Letters, 154, 149–152.PubMedGoogle Scholar
  121. Wise, P. M., Walovitch, R. C., Cohen, I. R., Weiland, N. G., & London, D. E. (1987). Diurnal rhythmicity and hypothalamic deficits in glucose utilization in aged ovariectomized rats. Journal of Neuroscience, 7, 3469–3473.PubMedGoogle Scholar
  122. Wise, P. M., Cohen, I. R., Weiland, N. G., & London, D. E. (1988). Aging alters the circadian rhythm of glucose utilization in the suprachiasmatic nucleus. Proceedings of the National Academy of Sciences of the USA, 85, 5305–5309.PubMedGoogle Scholar
  123. Wise, P. M., Scarbrough, K., Larson, G. H., Lloyd, J. M., Weiland, N. G., & Chiu, S. (1991). Neuroendocrine influences on aging of the female reproductive system. Frontiers in Neuroendocrinology, 12, 323–356.Google Scholar
  124. Witting, W., Mirmiran, M., Bos, N. P. A., & Swaab, D. F. (1993). Effect of light intensity on diurnal sleep-wake distribution in young and old rats. Brain Research Bulletin, 30, 157–162.Google Scholar
  125. Witting, W., Mirmiran, M., Bos, N. P. A., & Swaab, D. E (1994). The effect of old age on the free-running period of circadian rhythms in rat. Chronobiology International, 11, 103–112.PubMedGoogle Scholar
  126. Zee, P. C., Rosenberg, R. S., & Turek, F. W. (1992). Effects of aging on entrainment and rate of resynchronization of the circadian locomotor activity. American Journal of Physiology, 263, 1099–1103.Google Scholar
  127. Zhang, Y. (1995). Photic and nonphotic manipulation of the circadian clock of young and aged golden hamsters. Ph.D. Dissertation, Northwestern University, Evanston, Illinois.Google Scholar
  128. Zhang, Y., Kornhauser, J. M., Zee, P. C., Mayo, K. E., Takahashi, J. S., & Turek, E W. (1996). Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, fos expression, and CREB phosphorylation in the hamster suprachiasmatic nucleus. Neuroscience, 70, 951–961.PubMedGoogle Scholar
  129. Zhdanova, I. V., & Wurtman, R. J. (1997). Efficacy of melatonin as a sleep-promoting agent. Journal of Biological Rhythms, 12, 644–650.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Fred W. Turek
    • 1
  • Kathryn Scarbrough
    • 1
  • Planen Penev
    • 1
  • Susan Labyak
    • 1
  • verónica S. Valentinuzzi
    • 1
  • Olivier Van Reeth
    • 1
  1. 1.Department of Neurobiology and PhysiologyNorthwestern UniversityEvanston

Personalised recommendations