Skip to main content

Direct 5S rRNA Assay for Microbial Community Characterization

  • Chapter
Thermophiles Biodiversity, Ecology, and Evolution
  • 255 Accesses

Abstract

Research in the geothermal regions of Yellowstone National Park has revealed an abundance of microorganisms that inhabit these extreme environments. The description of these microbial populations has been addressed by a number of approaches. One approach was the cultivation and identification of microorganisms using classical microbiological methods (Brock and Darland, 1971; Brock and Freeze, 1969; Brock et al., 1972). Other approaches use molecular methods that identify microorganisms by sequence analysis of nucleic acids extracted from collected biomass (Stahl et al., 1985), polymerase chain reaction (PCR)-amplified rRNA genes from clones and isolates (Barns et al., 1994; Reysenbach et al., 1994; Saul et al., 1993), and cDNA synthesized from small subunit ribosomal RNA (16S rRNA) extracted from collected biomass (Ward et al., 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, K. L., Tayne, T. A., and Ward, D. M. 1987. Formation and fate of fermentation products in hot spring cyanobacterial mats. Appl. Environ. Microbiol. 53:2343.

    PubMed  CAS  Google Scholar 

  • Barns, S. M., Fundyga, R. E., Jeffries, M. W., and Pace, N. R. 1994. Remarkable archaeal diversity detected in Yellowstone National Park hot spring environment. Proc. Natl Acad. Sci. USA 91:1609.

    Article  PubMed  CAS  Google Scholar 

  • Bateson, M. M., and Ward, D. M. 1995. Analysis of Chloroflexus diversity in hot spring microbial mats by molecular methods and extincting dilution enrichment. Abstracts of the 95th General Meeting of the American Society for Microbiology, 1995. Washington, D.C.: American Society for Microbiology, p. 65.

    Google Scholar 

  • Bidle, K. D., and Fletcher, M. 1995. Comparison of free-living and particle-associated bacterial communities in the Chesapeake Bay by stable low-molecular-weight RNA analysis. Appl. Environ. Microbiol. 61:944.

    PubMed  CAS  Google Scholar 

  • Brock, T. D., and Brock, M. L. 1968. Relationship between environmental temperature and optimum temperature of bacteria along a hot spring thermal gradient. J. Appl. Bacteriol 31:54.

    Article  CAS  Google Scholar 

  • Brock, T. D., and Darland, G. K. 1971. Bacillus acidocaldarius sp. nov. an acidophilic thermophilic spore-forming bacterium. J. Gen. Microbiol. 67:9.

    Article  Google Scholar 

  • Brock, T. D., and Freeze, H. 1969. Thermus aquaticus gen. nov. and sp. nov., a non-sporulating extreme thermophile. J. Bacteriol. 98:289.

    PubMed  CAS  Google Scholar 

  • Brock, T. D., Brock, K. M., Belly, R. T., and Weiss, R. L. 1972. Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Microbiol. 84:54.

    CAS  Google Scholar 

  • Byrd, J. J., Xu, H. S., and Colwell, R. R. 1991. Viable but nonculturable bacteria in drinking water. Appl. Environ. Microbiol. 57:875.

    PubMed  CAS  Google Scholar 

  • Colwell, R. R., MacDonell, M. T., and Swartz, D. G. 1989. Identification of an antarctic endolithic microorganism by 5S rRNA sequence analysis. Syst. Appl. Microbiol. 11:182.

    Article  CAS  Google Scholar 

  • Doemel, W N., and Brock, T. D. 1977. Structure, growth, and decomposition of laminated algal-bacterial mats in alkaline hot springs. Appl. Environ. Microbiol. 34:433.

    PubMed  CAS  Google Scholar 

  • Ferris, M. J., and Ward, D. M. 1997. Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 63: 1375–1381.

    PubMed  CAS  Google Scholar 

  • Ghiorse, W C., and Balkwill, D. L. 1983. Enumeration and morphological characterization of bacteria indigenous to subsurface environments. Dev. Ind. Microbiol. 24:213.

    Google Scholar 

  • Harrison, A. P., Jarvis, B. W., and Johnson, J. L. 1980. Heterotrophic bacteria from cultures of autotrophic Thiobacillus ferrooxidans: Relationships as studied by means of deoxyribonucleic acid homology. J. Bacteriol 143:448.

    PubMed  CAS  Google Scholar 

  • Harrison, A. P. 1986. Characteristics of Thiobacillus ferrooxidans and other iron-oxidizing bacteria, with emphasis on nucleic acid analyses. Biotechnol. Appl. Biochem. 8:249.

    CAS  Google Scholar 

  • Höfle, M. G. 1988. Identification of bacteria by low molecular weight RNA profiles: A new chemotaxonomic approach. J. Microbiol. Methods 8:235.

    Article  Google Scholar 

  • Höfle, M. G. 1992. Bacterioplankton community structure and dynamics after large-scale release of non-indigenous bacteria as revealed by low molecular weight RNA analysis. Appl. Environ. Microbiol. 58:3387.

    PubMed  Google Scholar 

  • Johnson, D. B., personal communication.

    Google Scholar 

  • Johnson, D. B., Bacelar-Nicolau, P., Bruhn, D. F., and Roberto, F. F. 1995. Iron-oxidizing heterotrophic acidophiles: Ubiquitous novel bacteria in leaching environments. In November 19–22, 1995, Vargas, T., Jerex, C. A., Wiertz, J. V., and Toledo, H. (eds.), Biohydrometallurgical processing Vol. I. Proceedings of the International Biohydrometallurgy Symposium IBS-95 (pp. 47–56). Viña del Mar, Chile: University of Chile.

    Google Scholar 

  • Johnson, D. B., Body, D. A., Bridge, T. A. M., Bruhn, D. F., and Roberto, F. F. 2001. Biodiversity of acidophilic moderate thermophiles isolated from two sites in Yellowstone National Park, and their roles in the dissimilatory oxido-reduction of iron. In Reysenbach, A. L., Voytek, M., and Mancinelli, R. (eds.), Thermophiles: Biodiversity, Ecology, and Evolution (pp. 23–39). New York: Kluwer Academic/Plenum Press.

    Chapter  Google Scholar 

  • Johnson, D. B., Macvicar, J. H. M., and Rolfe, S. 1987. A new medium for the isolation and enumeration of Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria. J. Microbiol. Methods 7:9.

    Article  Google Scholar 

  • Kopczynski, E. D., Bateson, M. M., and Ward, D. M. 1994. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appl. Env. Microbiol. 60:746.

    CAS  Google Scholar 

  • Lane, D. J., Stahl, D. A., Olsen, G. J., Heller, D. J., and Pace, N. R. 1985. Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA species. J. Bacteriol. 163:75.

    PubMed  CAS  Google Scholar 

  • Liesack, W., Weland, H., and Stackebrandt, E. 1991. Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria. Microb. Ecol. 21:191.

    Article  CAS  Google Scholar 

  • Myers, R. M., Fischer, S. G., Lerman, L. S., and Maniatis, T. 1985. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acid Res. 13:3131–3145.

    Article  PubMed  CAS  Google Scholar 

  • Myers, R. M., Maniatis, T., and Lerman, L. S. 1987. Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155:501–527.

    Article  PubMed  CAS  Google Scholar 

  • Muyzer, G., de Waal, E. C., and Uitterlinden, A. G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695.

    PubMed  CAS  Google Scholar 

  • Pace, N. R., Stahl, D. A., Lane, D. J., and Olsen, G. J. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Adv. Microb. Ecol. 9:1.

    CAS  Google Scholar 

  • Peppel, K., and Baglioni, C. 1990. A simple and fast method to extract RNA from tissue culture cells. BioTechniques 9:711.

    PubMed  CAS  Google Scholar 

  • Revsbech, N. P., and Ward, D. M. 1984. Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl. Environ. Microbiol. 48:270.

    PubMed  CAS  Google Scholar 

  • Reysenbach, A.-L., Giver, L. J., Wickham, G. S., and Pace, N. R. 1992. Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58:3417.

    PubMed  CAS  Google Scholar 

  • Reysenbach, A.-L., Wickham, G. S., and Pace, N. R. 1994. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring. Yellowstone National Park. Appl. Environ. Microbiol. 60:2113.

    PubMed  CAS  Google Scholar 

  • Roberto, F. F., personal communication.

    Google Scholar 

  • Roszak, D. B., Grimes, D. J., and Colwell, R. R. 1984. Viable but non-recoverable stage of Salmonella enteriditis in aquatic systems. Can. J. Microbiol. 30:334.

    Article  PubMed  CAS  Google Scholar 

  • Ruff-Roberts, A. L., Kuenen, J. G., and Ward, D. M. 1994. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats. Appl. Environ. Microbiol. 60:697.

    PubMed  CAS  Google Scholar 

  • Saul, D. J., Rodrigo, A. G., Reeves, R. A., Williams, L. C., Borges, K. M., Morgan, H. W., and Bergquist, P. L. 1993. Phylogeny of twenty Thermus isolates constructed from 16S rRNA gene sequence data. Int. J. Syst. Bacteriol. 43:754.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, D. A., Lane, D. J., Olsen, G. J., and Pace, N. R. 1985. Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl. Environ. Microbiol. 49:1379.

    PubMed  CAS  Google Scholar 

  • Stoner, D. L., Burbank, N. S., and Miller, K. S. 1994. Anaerobic transformation of organosulfur compounds in microbial mats from Octopus Spring. Geomicrobiol. J. 12:195.

    Article  CAS  Google Scholar 

  • Stoner, D. L., Browning, C. K., Bulmer, D. K., Ward, T. E., and MacDonell, M. T. 1996. Direct 5S rRNA for the characterization of mixed culture bioprocesses. Appl. Environ. Microbiol. 62:1969.

    PubMed  CAS  Google Scholar 

  • Tuovinen, O. H., and Kelly, D. P. 1974. Studies on the growth of Thiobacillus ferrooxidans V. Factors affecting growth in liquid culture and development of colonies on solid media containing inorganic sulphur compounds.Arch. Microbiol. 98:351.

    Article  PubMed  CAS  Google Scholar 

  • Vischniac, W., and Santer, M. 1957. The thiobacilli. Bacteriol. Rev. 21:195.

    Google Scholar 

  • Ward, D. M. 1978. Thermophilic methanogenesis in a hot-spring algal-bacterial mat (71 to 30°C). Appl. Environ. Microbiol. 35:1019.

    PubMed  CAS  Google Scholar 

  • Ward, D. M., Weller, R., and Bateson, M. M. 1990.16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63.

    Article  PubMed  CAS  Google Scholar 

  • Weller, R., and Ward, D. M. 1989. Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA. Appl. Environ. Microbiol. 55:1818.

    PubMed  CAS  Google Scholar 

  • Wichlacz, P. L., and Unz, R. F. 1981. Acidophilic, heterotrophic bacteria of acidic mine waters. Appl. Environ. Microbiol. 41:1254.

    PubMed  CAS  Google Scholar 

  • Wichlacz, P. L., Unz, R. F., and Langworthy, T. A. 1986. Acidiphilium angustum sp. nov., Acidiphilium facilis, sp. nov., and Acidiphilium rubrum, sp. nov.: Acidophilic heterotrophic bacteria from acidic coal mine drainage. Int. J. Syst. Bacteriol. 36:197.

    Article  Google Scholar 

  • Zeikus, J. G., Ben-Bassat, A., and Hegge, P. W. 1980. Microbiology of methanogenesis in thermal, volcanic environments. J. Bacteriol. 143:432.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stoner, D.L., Browning, C.K., Bulmer, D.K., Ward, T.E., MacDonell, M.T. (2001). Direct 5S rRNA Assay for Microbial Community Characterization. In: Reysenbach, AL., Voytek, M., Mancinelli, R. (eds) Thermophiles Biodiversity, Ecology, and Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1197-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1197-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5436-9

  • Online ISBN: 978-1-4615-1197-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics