Examining Bacterial Population Diversity within the Octopus Spring Microbial Mat Community

  • M. J. Ferris
  • S. C. Nold
  • C. M. Santegoeds
  • D. M. Ward


The importance of preserving biodiversity has gained considerable attention as the possibility of destroying our remaining natural ecosystems has been realized (Schulze and Mooney, 1993). Consequently questions about how the loss of vast, species-rich habitats such as rain forests might influence global scale processes are receiving serious consideration. A more pragmatic view holds that a reduction in species diversity might result in the loss of valuable commodities, such as natural compounds with medicinal properties. Certainly bacteria influence processes on a global scale and produce many of humanity’s most beneficial and commercially valuable products, yet sequence-based population surveys have proven that only a small minority of bacteria have been studied. Some recent findings underscore this point. In 1993, it was discovered that macroscopic symbionts of surgeonfish are actually bacterial cells (Ahern, 1993; Angert et al., 1993), designated Epulopiscium fishelsoni. This bacterium is the largest prokaryote known, and its existence has forced a reevaluation of the limit of prokaryotic cell size. In the same year, new bacteria that perform a novel type of photosynthesis, phototropic iron oxidation, were discovered (Widdel et al., 1993; Ehrenreich and Widdel, 1994), presenting a possible new explanation for the origin of banded iron formations. In 1994, an entirely new branch of Archaea was discovered. Termed the Korarchaeota, these bacteria represent the most deeply divergent archaeal group known (Barns et al., 1994,1996). With such striking diversity now revealed, it seems certain that new insights into nutrient cycling and bacterial metabolites remain to be discovered.


Enrichment Culture Banded Iron Formation Cyanobacterial Population Methanobacterium Thermoautotrophicum Selective Enrichment Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, E. S., and Stanton, V. P. 1992. Use of denaturing gradient gel electrophoresis to study conformational transitions in nucleic acid. Methods Enzymol 212:71–104.PubMedCrossRefGoogle Scholar
  2. Ahern, H. 1993. A big bacterium-oxymoron of the microbial world. ASM News 59:519–521.Google Scholar
  3. Amann, R., Ludwig, W., and Schleifer, K. H. 1994. Identification of uncultured bacteria: A challenging talk for molecular taxonomists. ASM News 60:360–361.Google Scholar
  4. Angert, E. R., Clements, K. D., and Pace, N. R. 1993. The largest bacterium. Nature 362:239–241.PubMedCrossRefGoogle Scholar
  5. Barns, S. M., Delwiche, C. F., Palmer, J. D., and Pace, N. R. 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad. Sci. USA 93:9188–9193.PubMedCrossRefGoogle Scholar
  6. Barns, S. M., Fundyga, R. E., Jeffries, M. W., and Pace, N. R. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91:1609–1613.PubMedCrossRefGoogle Scholar
  7. Ben-Basset, A., and Zeikus, J. G. 1981. Thermobacteroides acetoethylicus gen. nov. and spec. nov., a new chemoorganotrophic anaerobic, thermophilic bacterium. Arch. Microbiol. 128:365–370.CrossRefGoogle Scholar
  8. Britschgi, T. B., and Giovannoni, S. J. 1991. Phlyogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environ. Microbiol. 57:1707–1713.PubMedGoogle Scholar
  9. Brock, T. D., and Freeze, H. 1969. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bacteriol. 98:289–297.PubMedGoogle Scholar
  10. Castenholz, R. W. 1981. Isolation and cultivation of thermophilic cyanobacteria. In Starr, M. P., Stolp, H., Truper, H. G., Balows, A., and Schlegel, H. G. (eds.), The prokaryotes (pp. 236–246). Berlin: Springer-Verlag.Google Scholar
  11. Castenholz, R. W., and Waterbury, J. B. 1989. Oxygenic photosynthetic bacteria. In Staley, J. T., Bryant, M. P., Pfennig, N., and Holt, J. G. (eds.) Bergey’s manual of systematic bacteriology, Vol. 3 (pp. 1710–1806). Baltimore: Williams & Wilkins.Google Scholar
  12. Choi, B. K., Paster, B. J., Dewhirst, F. E., and Gobel, U. B. 1994. Diversity of cultivable and uncultivable oral spirochetes from a patient with severe destructive periodontitis. Infect. Immun. 62:1889–1895.PubMedGoogle Scholar
  13. DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89:5685–5689.PubMedCrossRefGoogle Scholar
  14. Doemel, W. N., and Brock, T. D. 1977. Structure, growth, and decomposition of laminated algal-bacterial mats in alkaline hot springs. Appl. Environ. Microbiol. 34:433–452.PubMedGoogle Scholar
  15. Ehrenreich, A., and Widdel, F. 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 60:4517–4526.PubMedGoogle Scholar
  16. Farrelly, V., Rainey, F. A., and Stackebrandt, E. 1995. Effect of genome size and rRNA gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61: 2798–2801.PubMedGoogle Scholar
  17. Ferris, M. J., Muyzer, G., and Ward, D. M. 1996a. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62:340–346.PubMedGoogle Scholar
  18. Ferris, M. J., Nold, S. C., Revsbech, N. P., and Ward, D. M. 1997. Population structure and physiological changes within a hot spring microbial mat community following disturbance. Appl. Environ. Microbiol. 63:1367–1374.PubMedGoogle Scholar
  19. Ferris, M. J., Ruff-Roberts, A. L., Kopczynski, E. D., Bateson, M. M., and Ward, D. M. 1996b. Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl. Environ. Microbiol. 62:1045–1050.PubMedGoogle Scholar
  20. Ferris, M. J., and Ward, D. M. 1997. Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 63: 1375–1381.PubMedGoogle Scholar
  21. Fuhrman, J. A., McCallum, K., and Davis, A. A. 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microbiol. 59:1294–1302.PubMedGoogle Scholar
  22. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L., and Field, K. G. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63.PubMedCrossRefGoogle Scholar
  23. Giovannoni, S. J., Schabtack, E., and Castenholz, R. W. 1987. Isosphaera pallida, gen. and sp. nov., a gliding, budding eubacterium from hot springs. Arch. Microbiol. 147:276–284.CrossRefGoogle Scholar
  24. Jackson, T. J., Ramaley, R. F., and Meinschein, W. G. 1973. Thermomicrobium, a new genus of extremely thermophilic bacteria. Int. J. Syst. Bacteriol. 23:28–36.CrossRefGoogle Scholar
  25. Kallas, T., and Castenholz, R. W. 1982. Initial pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. during exposure to growth-inhibiting low pH. J. Bacteriol. 149:229–236.PubMedGoogle Scholar
  26. Kopczynski, E. D., Bateson, M. M., and Ward, D. M. 1994. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appl. Environ. Microbiol. 60:746–748.PubMedGoogle Scholar
  27. Liesack, W., and Stackebrandt, E. 1992. Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol. 174:5072–5078.PubMedGoogle Scholar
  28. Malvaganam, S., and Dennis, P. P. 1992. Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic Archaebacterium Haloarcula marismortui. Genetics 130:399–410.Google Scholar
  29. Martin, M. T., Sato, M. I. Z., Tiedje, J. M., Hagler, L. C. N., Dobereiner, J., and Sanchez, P. S. (eds.) 1997. Progress in Microbial Ecology. Brazilian Society for Microbiology/International Committee on Microbial Ecology. São Paulo, Brazil. 147–153.Google Scholar
  30. Muyzer, G., and De Waal, E. C. 1994. Determination of the genetic diversity of microbial communities using DGGE analysis of PCR-amplified 16S rDNA. In Stal, L. J., and Caumette, P. (eds.) Microbial mats: Structure, development and environmental significance (pp. 207–214). Berlin: Springer-Verlag.Google Scholar
  31. Muyzer, G., De Waal, E. C., and Uitterlinden, A. G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol 59:695–700.PubMedGoogle Scholar
  32. Muyzer, G., Teske, A., Wirsen, C. O., and Jannasch, H. W. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164:165–172.PubMedCrossRefGoogle Scholar
  33. Myers, R. M., Maniatis, T., and Lerman, L. S. 1987. Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155:501–527.PubMedCrossRefGoogle Scholar
  34. Nold, S. C., Kopczynski, E. P., and Ward, D. M. 1996. Cultivation of proteobacteria and gram positive bacteria from a hot spring microbial mat. Appl. Environ. Microbiol. 62:3917–3921.PubMedGoogle Scholar
  35. Nold, S. C, and Ward, D. M. 1995. Diverse Thermus species inhabit a single hot spring microbial mat. Syst. Appl. Microbiol. 18:274–278.PubMedCrossRefGoogle Scholar
  36. Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wreshuber, A., Amann, R. I., and Ludwig, W. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178:5636–5643.PubMedGoogle Scholar
  37. Olsen, G. J., Lane, D. J., Giovannoni, S. J., and Pace, N. R. 1986. Microbial ecology and evolution: A ribosomal RNA approach. Annu. Rev. Microbiol. 40:337–365.PubMedCrossRefGoogle Scholar
  38. Olsen, G. J., and Woese, C. R. 1993. Ribosomal RNA: A key to phylogeny. FASEB J. 7:113–123.PubMedGoogle Scholar
  39. Pace, N. R., Stahl, D. A., Lane, D. J., and Olsen, G. J. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Adv. Microb. Ecol. 9:1–55.Google Scholar
  40. Pierson, B. K., and Castenholz, R. W. 1974. A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch. Microbiol. 100:5–24.PubMedCrossRefGoogle Scholar
  41. Rainey, F. A., Ward, N., Sly, L. I., and Stackebrandt, E. 1994. Dependence of the taxonomic composition of clone libraries from PCR-amplified naturally occurring 16S rDNA on the primer pair and the cloning system used. Experientia 50:789–801.CrossRefGoogle Scholar
  42. Rainey, F. A., Ward-Rainey, N. L., and Stackebrandt, E. 1996. Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 142:2087–2091.PubMedCrossRefGoogle Scholar
  43. Ramsing, N. B., Ferris, M. J., and Ward, D. M. 2000. Highly ordered vertical structure of Synechococcus populations within the one-millimeter-thick photic zone of a hot spring cyanobacterial mat. Appl. Environ. Microbiol. 66:1038–1049.PubMedCrossRefGoogle Scholar
  44. Reysenbach, A. L., Giver, L. J., Wickham, G. S., and Pace, N. R. 1992. Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58:3417–3418.PubMedGoogle Scholar
  45. Robison-Cox, J. F., Bateson, M. M., and Ward, D. M. 1995. Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences. Appl. Environ. Microbiol. 61:1240–1245.PubMedGoogle Scholar
  46. Ruff-Roberts, A. L., Kuenen, G. J., and Ward, D. M. 1994. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats. Appl. Environ. Microbiol. 60:697–704.PubMedGoogle Scholar
  47. Sandbeck, K. A., and Ward, D. M. 1982. Temperature adaptations in the terminal processes of anaerobic decomposition of Yellowstone and Icelandic hot spring microbial mats. Appl. Environ. Microbiol. 44:844–851.PubMedGoogle Scholar
  48. Santegoeds, C. M., Nold, S. C, and Ward, D. M. 1996. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Appl. Environ. Microbiol. 58:3417–3418.Google Scholar
  49. Schink, B., and Zeikus, J. G. 1983. Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate. J. Gen. Microbiol. 129:1149–1158.Google Scholar
  50. Schmidt, T. M., DeLong, E. F., and Pace, N. R. 1991. Analysis of marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173:4371–4378.PubMedGoogle Scholar
  51. Schulze, E., and Mooney, H. A. 1993. Biodiversity and ecosystem function. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  52. Stackebrandt, E., Liesack, W., and Goebel, B. M. 1993. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J. 7:232–236.PubMedGoogle Scholar
  53. Suzuki, M. T., Rappe, M. S., Haimberger, Z. W., Winfield, H., Adair, N., Strobel, J., and Giovannoni, S. J. 1997. Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. Environ. Microbiol. 63:983–989.PubMedGoogle Scholar
  54. Ward, D. M., Bateson, M. M., Weller, R., and Ruff-Roberts, A. L. 1992. Ribosomal RNA analysis of microorganisms as they occur in nature. In Marshal, K. C. (ed.) Advances in microbial ecology (pp. 219–286). New York: Plenum.CrossRefGoogle Scholar
  55. Ward, D. M., Ferris, M. J., Nold, S. C., Bateson, M. M., Kopczynski, E. D., and Ruff-Roberts, A. L. 1994. Species diversity in hot spring microbial mats as revealed by both molecular and enrichment culture approaches-relationship between biodiversity and community structure. In Stal, L. J., and Caumette, P. (eds.) Microbial mats: Structure, development and environmental significance (pp. 33–44). Berlin: Springer-Verlag.Google Scholar
  56. Ward, D. M., Santegoeds, C. M., Nold, S. C., Ramsing, N. B., Ferris, M. J., and Bateson, M. M. 1997. Biodiversity within hot spring microbial mat communities: Molecular monitoring of enrichment cultures. Antonie Leeuwenhoek 71:143–150.PubMedCrossRefGoogle Scholar
  57. Ward, D. M., Tayne, T. A., Anderson, K. L., and Bateson, M. M. 1987. Community structure and interactions among community members in hot spring cyanobacterial mats. Symp. Soc. Gen. Microbiol. 41:179–210.Google Scholar
  58. Ward, D. M., Weller, R., and Bateson, M. M. 1990a. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65.PubMedCrossRefGoogle Scholar
  59. Ward, D. M., Weller, R., and Bateson, M. M. 1990b. 16S rRNA sequences reveal uncultured inhabitants of a wellstudied thermal community. FEMS Microbiol. Rev. 75:105–116.CrossRefGoogle Scholar
  60. Ward, D. M., Weller, R., Shiea, J., Castenholz, R. W., and Cohen, Y. 1989. Hot spring microbial mats: Anoxygenic and oxygenic mats of possible evolutionary significance. In Cohen, Y., and Rosenberg, E. (eds.) Microbial mats physiological ecology of benthic microbial communities. Washington, D.C.: American Society for Microbiology.Google Scholar
  61. Wawer, C., and Muyzer, G. 1995. Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl. Environ. Microbiol.61:2203–2210.PubMedGoogle Scholar
  62. Weller, R., Bateson, M. M., Heimbuch, B. K., Kopczynski, E. D., and Ward, D. M. 1992. Uncultivated cyanobacteria,Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. Appl.Environ. Microbiol. 58:3964–3969.PubMedGoogle Scholar
  63. Weller, R., Weller, J. W., and Ward, D. M. 1991.16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA. Appl. Environ. Microbiol. 57:1146–1151.PubMedGoogle Scholar
  64. Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., and Schink, B. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836.CrossRefGoogle Scholar
  65. Wiegel, J., Braun, M., and Gottschalk, G. 1981. Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr. Microbiol. 5:255–260.CrossRefGoogle Scholar
  66. Wiegel, J., and Ljungdahl, L. G. 1981. Thermoanaerobium ethanolicus gen. nov., sp. nov., a new, extreme thermophilic, anaerobic bacterium. Arch. Microbiol. 128:343–348.CrossRefGoogle Scholar
  67. Wiegel, J., Ljungdahl, L. G., and Rawson, J. R. 1979. Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J. Bacteriol. 139:800–810.PubMedGoogle Scholar
  68. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221–271.PubMedGoogle Scholar
  69. Woese, C. R. 1994. Microbiology in transition. Proc. Natl. Acad. Sci. USA 91:1601–1603.PubMedCrossRefGoogle Scholar
  70. Zeikus, J. G., Ben-Basset, A., and Hegge, P. W. 1980. Microbiology of methanogenesis in thermal, volcanic environments. J. Bacteriol. 143:432–440.PubMedGoogle Scholar
  71. Zeikus, J. G., Dawson, M. A., Thompson, T. E., Ingvorsen, K., and Hatchikian, E. C. 1983. Microbial ecology of volcanic sulphidogenesis: Isolation and characterization of Thermodesulfobacterium commune gen. nov.and sp. nov. Arch. Microbiol. 129:1159–1169.Google Scholar
  72. Zeikus, J. G., Gegge, P. W., and Anderson, M. A. 1979. Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 122:41–48.CrossRefGoogle Scholar
  73. Zeikus, J. G., and Wolfe, R. S. 1972. Methanobacterium thermoautotrophicum sp. nov., an anaerobic, autotrophic,extreme thermophile. J. Bacteriol. 109:707–713.PubMedGoogle Scholar
  74. Zeng, Y. B., Ward, D. M., Brassell, S., and Eglinton, G. 1992a. Biogeochemistry of hot spring environments.3. Apolar and polar lipids in the biologically active layers of a cyanobacterial mat. Chem. Geol. 95:347–360.CrossRefGoogle Scholar
  75. Zeng, Y. B., Ward, D. M., Brassell, S., and Eglinton, G. 1992b. Biogeochemistry of hot spring environments.2. Lipid compositions of Yellowstone (Wyoming, USA) cyanobacterial and Chloroflexus mats. Chem. Geol.95:327–345.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • M. J. Ferris
    • 1
  • S. C. Nold
    • 1
  • C. M. Santegoeds
    • 1
  • D. M. Ward
    • 1
  1. 1.Department of MicrobiologyMontana State UniversityBozemanUSA

Personalised recommendations