Skip to main content

Biodiversity of Acidophilic Moderate Thermophiles Isolated from Two Sites in Yellowstone National Park and Their Roles in the Dissimilatory Oxido-Reduction of Iron

  • Chapter
Thermophiles Biodiversity, Ecology, and Evolution

Abstract

Bacteria that bring about dissimilatory transformations of iron are important from both biogeochemical and industrial perspectives (Ehrlich and Brierley, 1990; Johnson, 1995). The oxido-reduction of iron in extremely acidic (pH > 3) environments is particularly interesting because of the greater solubility of ionic (particularly ferric) iron and the relative stability of soluble ferrous iron under these conditions. Acidophilic iron-oxidizing bacteria are generally considered the most significant microorganisms in the biological processing of sulfide ores (“biomining”) in which the accelerated oxidative dissolution of sulfidic minerals (e.g., pyrite, arsenopyrite, and chalcopyrite) solubilizes (e.g., copper) or releases (refractory gold) metals, thereby facilitating their recovery (Rawlings and Silver, 1995). Most research into bacterial iron transformations at low pH has focused on mesophilic chemolithotrophs, particularly Thiobacillus ferrooxidans, though a number of physiologically and phenotypically diverse mesophilic acidophiles, it is now known, are involved in the dissimilatory oxido-reduction of iron (Johnson, 1995; Norris and Johnson, 1997; Pronk and Johnson, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bridge, T. A. A., and Johnson, D. B. 1998. Reduction of soluble iron and reductive dissolution of ferric ironcontaining minerals by moderately thermophilic iron-oxidizing bacteria. Appl. Environ. Microbiol. 64:2181.

    PubMed  CAS  Google Scholar 

  • Brock, T. D. 1978. Thermophilic microorganisms and life at high temperatures. New York: Springer-Verlag.

    Book  Google Scholar 

  • Brock, T. D., and Gustafson, J. 1976. Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl. Environ.Microbiol. 32:567.

    PubMed  CAS  Google Scholar 

  • Clark, D. A., and Norris, P. R. 1996. Acidimicrobium ferrooxidans gen. nov., sp. nov.: Mixed culture ferrous iron oxidation with Sulfobacillus species. Microbiology 141:785.

    Article  Google Scholar 

  • De Soete, G. 1983. A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621.

    Article  Google Scholar 

  • Ehrlich, H. L., and Brierley, C. L. (eds.). 1990. Microbial mineral recovery. New York: McGraw-Hill.

    Google Scholar 

  • Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package), version 3.5c. Seattle: Department of Genetics,University of Washington.

    Google Scholar 

  • Ghauri, M. A., and Johnson, D. B. 1991. Physiological diversity amongst some moderately thermophilic ironoxidising bacteria. FEMS Microbiol. Ecol. 85:327.

    Article  CAS  Google Scholar 

  • Johnson, D. B. 1995. Mineral cycling by microorganisms: Iron bacteria. In Allsop, D., Hawksworth, D. L., and Colwell, R. R. (eds.), Microbial diversity and ecosystem function (pp. 137–159). Wallingford, U.K.: CAB International.

    Google Scholar 

  • Johnson, D. B. 1995. Selective solid media for isolating and enumerating acidophilic bacteria. J. Microbiol. Meth.23:205.

    Article  Google Scholar 

  • Johnson, D. B., and McGinness, S. 1991. Ferric iron reduction by acidophilic heterotrophic bacteria. Appl.Environ. Microbiol. 57:207.

    PubMed  CAS  Google Scholar 

  • Johnson, D. B., Ghauri, M. A., and McGinness, S. 1993. Biogeochemical cycling of iron and sulphur in leaching environments. FEMS Microbiol. Rev. 11:63.

    Article  CAS  Google Scholar 

  • Lane, D. J., Harrison, A. P., Jr., Stahl, D., Pace, B., Giovannani, S. J., Olsen, G. J., and Pace, N. R. 1992.Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J. Bacteriol. 174:269.

    PubMed  CAS  Google Scholar 

  • Lovley, D. P., and Phillips, E. J. P. 1987. Rapid assay for microbially reducible ferric iron in aquatic sediments.Appl. Environ. Microbiol. 53:1536.

    PubMed  CAS  Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Fair, A. L., and Randall, R. J. 1952. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265.

    Google Scholar 

  • Maidak, B. L., Olsen, G. J., Larsen, N., Overbeek, R., McCaughey, M. J., and Woese, C. R. 1997. The RDP (Ribosomal Database Project). Nucl. Acids Res. 25:109.

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom, D. K., Everett, E. A., and Ball, J. W. 1979. Redox equilibria of iron in acid mine waters. In Jenne, E. A. (ed.), Chemical modeling in aqueous systems (pp. 51–79). Washington, D.C.: American Chemical Society.

    Chapter  Google Scholar 

  • Norris, P. R. 1990. Acidophilic bacteria and their activity in mineral sulphide oxidation. In Ehrlich, H. L., and Brierley, C. R. (eds.), Microbial mineral recovery, New York: McGraw-Hill.

    Google Scholar 

  • Norris, P. R., and Johnson, D. B. 1997. Acidophilic microorganisms. In K. Horikoshi, K., and Grant, W. D. (eds.), Extremophiles: Microbial life in extreme environments (pp. 133–154). New York: Wiley.

    Google Scholar 

  • Norris, P. R., Clark, D. A., Owen, J. P., and Waterhouse, S. 1996. Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral sulphide-oxidizing bacteria. Microbiology 141:775.

    Article  Google Scholar 

  • Pronk, J. T., and Johnson, D. B. 1992. Oxidation and reduction of iron by acidophilic bacteria. Geomicrobiol. J. 10:153.

    Article  CAS  Google Scholar 

  • Rawlings, D. W., and Silver, S. 1995. Mining with microbes. Bio/Technology 13:773.

    Article  CAS  Google Scholar 

  • Smith, S. 1994. Genetic Data Environment, version 2.2. Champaign-Urbana: University of Illinois.

    Google Scholar 

  • Tuorova, T. P., Poltoraus, A. B., Lebedeva, I. A., Tsaplina, I. A., Bogdanova, T. I., and Karavaiko, G. I.1994.16S ribosomal RNA (rDNA) sequence analysis and phylogenetic position of Sulfobacillus thermosulfidooxidans. Syst. Appl. Microbiol. 17:509.

    Article  Google Scholar 

  • Wisotzkey, J. D., Jurtshuk, P., Jr., Fox, G. E., Deinhard, G., and Poralla, K. 1992. Comparative sequence analysis on the 16S RNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Appl. J. Syst. Bacteriol 42:263.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnson, D.B., Body, D.A., Bridge, T.A.M., Bruhn, D.F., Roberto, F.F. (2001). Biodiversity of Acidophilic Moderate Thermophiles Isolated from Two Sites in Yellowstone National Park and Their Roles in the Dissimilatory Oxido-Reduction of Iron. In: Reysenbach, AL., Voytek, M., Mancinelli, R. (eds) Thermophiles Biodiversity, Ecology, and Evolution. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1197-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1197-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5436-9

  • Online ISBN: 978-1-4615-1197-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics