A Peptide System Regulating Fat Intake
  • Charlotte Erlanson-Albertsson


Man is constructed to eat regular meals. Moreover, man is constructed to prefer food that is energy-rich and tasty. Dietary lipids are both energy-rich and tasty, with several spices being lipid soluble. In the early history of man dietary lipids were scarce but gradually increased with the development of an agricultural society. Since the 1950s dietary fat intake in the Western world has dramatically increased from around 30 energy percent to 40 energy percent (Dreon et al., 1988). This has as a consequence an increased frequency of obesity and insulin resistance, eventually leading to Type 2 diabetes at the moment of failure of the islets of Langerhans (Bray et al., 1990; Steffens et al., 1991; Shafrir and Gutman, 1993). The reason that a high fat intake has serious metabolic implications is that fat taken in is not automatically oxidized in proportion to its consumption as is dietary carbohydrate and protein (Thomas et al., 1992). Instead an increased fat intake leads to the accumulation of fat in skeletal muscle and adipose tissue. The insulin resistance following high-fat feeding is due to an impairment of the insulin receptor signaling events downstream in the target cell, the insulin receptor and its insulin receptor substrates, for instance Insulin receptor substrate 1 (IRS-1) and Phosphatidylinositol-3 kinase (PI3-kinase), being phosphorylated at several serine/threonine residues instead of the normal tyrosine phosphorylation (Paz et al., 1996). In the muscle that is the first tissue to become insulin resistant following high-fat feeding, long-chain acyl-CoA has been shown to raise the levels of protein kinase C, which in turn activates serine/threonine residues (Schmitz Peiffer et al., 1997). In light of the multiple metabolic disturbances of a high dietary fat intake, great interest has been taken in the regulation of appetite, especially with the interest of a specific macronutrient appetite regulation.


Brown Adipose Tissue Pancreatic Lipase Insulin Receptor Substrate Pancreatic Secretion Gastric Inhibitory Polypeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barton, C, Lin L., York D. A., and Bray G. A., 1995, Differential effects of enterostatin, galanin and opioids on high-fat diet consumption, Brain Res. 702:55–60.PubMedCrossRefGoogle Scholar
  2. Belfrage, P., 1985, Hormonal control of lipid degradation, in: New Perspectives in Adipose Tissue (A. Cryer, and R. L. R. Van, eds), Butterworths, London, pp. 121–144.Google Scholar
  3. Berger, K., Sörhede-Winzell, M., and Erlanson-Albertsson, C., 1998, Binding of enterostatin to the human neuroepithelioma cell line SK-N-MC, Peptides 19:1525–1531.PubMedCrossRefGoogle Scholar
  4. Blundell, J. E., and Clawton, C. L., 1995, Serotonin and dietary fat intake: Effects of dexfenfluramine, Metabolism 44 (Suppl. 2):33–37.PubMedCrossRefGoogle Scholar
  5. Borgström, B., Wieloch, T., and Erlanson-Albertsson, C., 1979, Evidence for a pancreatic procolipase and its activation by trypsin, FEBS Lett. 108:407–410.PubMedCrossRefGoogle Scholar
  6. Bouras, M., Huneau, J. F., Luengo, C., Erlanson-Albertsson, C., and Tomé, D., 1995, Metabolism of enterostatin in rat intestine, brain membranes and serum: Differential involvement of proline-specific peptidases, Peptides 16:399–405.PubMedCrossRefGoogle Scholar
  7. Bowyer, R. C., Jehanli, A. M. T., Patel, G., and Hermon-Taylor, J., 1991, Development of enzyme-linked immunosorbent assay for free human procolipase activation peptide (APGPR), Clin. Chim. Acta 200:137–152.PubMedCrossRefGoogle Scholar
  8. Bowyer, R. C., Rowston, W. M., Jehanli, A. M. T., Lacey, J. H., and Hermon-Taylor, J., 1993, The effect of a satiating meal on the concentrations of procolipase activation peptide in the serum and urine of normal and morbidly obese individuals, Gut 34:1520–1525.PubMedCrossRefGoogle Scholar
  9. Bray, G. A., 1992, Peptides affect the intake of specific nutrients and the sympathetic nervous system, Am. J. Clin. Nutr. 55:2655–2715.Google Scholar
  10. Bray, G. A., Fisler, J. S., and York, D. A., 1990, Neuroendocrine control of the development of obesity: Understanding gained from studies of experimental models of obesity,Prog. Neuroendocrinol. 4:128–181.Google Scholar
  11. Briendley, D. N., 1995, Role of glucocorticoids and fatty acids in the impairement of lipid metabolism observed in the metabolic syndrome, Int. J. Obes. 19 (Suppl. 1): S69–S75.Google Scholar
  12. Cook, C., Gatchair-Rose, A., Herminghuysen, D, Nair, R., Prasad, A., Mizuma, H., and Prasad, C., 1994, Individual differences in the macronutrient profile of outbred rats: implications for nutritional, metabolic and pharmacological studies, Life Sci. 55:1463–1470.PubMedCrossRefGoogle Scholar
  13. Dreon, D. M., Frey-Hewitt, B., Ellsworth, N., Williams, P. T., Terry, R. B., and Wood, P. D., 1988, Dietary fat: Carbohydrate ratio and obesity in middle aged men, Am. J. Clin. Nutr. 47:995–1000.PubMedGoogle Scholar
  14. Duan, R., and Erlanson-Albertsson, C., 1989, Pancreatic lipase and colipase activity increase in pancreatic acinar tissue of diabetic rats, Pancreas 4:329–334.PubMedCrossRefGoogle Scholar
  15. Duan, R., and Erlanson-Albertsson, C., 1990, The anticooordinate changes of pancreatic lipase and colipase activity to amylase activity by adrenalectomy in normal and diabetic rats,Int. J. Pancreatol. 6:271–279.PubMedGoogle Scholar
  16. Duan, R., and Erlanson-Albertsson, C., 1992, Gastric inhibitory polypeptide stimulates pancreatic lipase and colipase synthesis in rats, Amer. J. Physiol. 262 :G779–G784.PubMedGoogle Scholar
  17. Duan, R., Wicker, C., and Erlanson-Albertsson, C., 1991, Effect of insulin administration on contents, secretion and synthesis of pancreatic lipase and colipase in rats, Pancreas 6:595–602.PubMedCrossRefGoogle Scholar
  18. Erlanson-Albertsson, C., 1992, Pancreatic colipase. Structural and physiological aspects. Biochim. Biophys. Acta 1125:1–7.Google Scholar
  19. Erlanson-Albertsson, C., 1994, Pancreatic lipase, colipase and enterostatin-A lipolytic triad, in: Esterases, Lipases and Phospholipases: From Structure to Clinical Significance (M. I. Mackness and M. Clerc, eds.), Plenum Press, New York, pp. 159–168.Google Scholar
  20. Erlanson-Albertsson, C., and Larsson, A., 1988, A possible physiological function of procolipase activation peptide in appetite regulation, Biochimie 70:1245–1250.PubMedCrossRefGoogle Scholar
  21. Erlanson-Albertsson, C., and York, D. A., 1997, Enterostatin-Apeptide regulating fat intake, Obes. Res. 5:360–372.PubMedCrossRefGoogle Scholar
  22. Erlanson-Albertsson, C., Mei, J., Okada, S., York, D., and Bray, G. A., 1991a, Pancreatic procolipase propeptide, enterostatin, specifically inhibits fat intake, Physiol. Behav. 49:1191–1194.PubMedCrossRefGoogle Scholar
  23. Erlanson-Albertsson, C., Weström, B., Pierzynowski, S., Karlsson, S., and Ahrén B., 1991b, Pancreatic procolipase activation peptide-enterostatin-inhibits pancreatic enzyme secretion in the pig, Pancreas 6:619–624.PubMedCrossRefGoogle Scholar
  24. Erlanson-Albertsson, C., Hering, B. J., Bretzler, B. G., and Federlin, K., 1994, Enterostatin inhibits insulin secretion from isolated perifused rat islets, Acta Diabetol. 31:160–164.PubMedCrossRefGoogle Scholar
  25. Fisler, J. S., and Bray, G. A., 1995, Dietary obesity: Effects of drugs on food intake in S5B/PL and Osborne-Mendel rats, Physiol. Behav. 34:225–231.CrossRefGoogle Scholar
  26. Gabert, V. M., Jensen, M. S., Jörgensen, H:, Engberg, R. M., and Jensen, S. K., 1996, Exocrine pancreatic secretion in growing pigs fed diets containing fish oil, rapeseed oil or coconut oil, J. Nutr. 126:2076–2082.PubMedGoogle Scholar
  27. Hermoso, J., Pignol, D., Penel, S., Roth, M., Chapus, C., and Fontecilla-Camps, J. C., 1997, Neutron crystallographic evidence of lipase-colipase complex activation by a micelle, EMBO J. 16:5531–5536.PubMedCrossRefGoogle Scholar
  28. Huneau, J. F., Erlanson-Albertsson, C., Beauvallet, C., and Tomé, D., 1994, The in vitro absorption of enterostatin is limited by brush border membrane peptidases, Regul. Pept. 54:495–503.PubMedCrossRefGoogle Scholar
  29. Kiela, P., Pierzynowski, S. G., Oldak, T., Ceregrzyn, M., Erlanson-Albertsson, C., Wiechetek, M., and Garwacki, S., 1994, The effect of enterostatin on pig duodenal, jejunal and ileal motility in vitro, Biomed. Res. 15 (Suppl. 2):303–307.Google Scholar
  30. Leibowitz, S. F., 1994, Specificity of hypothalamic peptides in the control of behavioural and physiological processes, Ann. N. Y Acad. Sci. 739:12–35.PubMedCrossRefGoogle Scholar
  31. Levine, A. S., Morley, J. E., Gosnell, B. A., Billington, C. J., and Bartness, T. J., 1985, Opioids and consummatory behaviour, Brain Res. Bull. 14:663–672.PubMedCrossRefGoogle Scholar
  32. Lin, L., and York, D. A., 1997, Comparisons of the effects of enterostatin on food intake and gastric emptying in rats, Brain Res. 745:205–209.PubMedCrossRefGoogle Scholar
  33. Lin, L., Gehlert, D. R., York, D. A., and Bray, G. A., 1993a, Effect of enterostatin on the feeding responses to galanin and NPY, Obes. Res.1:186–192.PubMedCrossRefGoogle Scholar
  34. Lin, L., McClanahan, S., York, D. A., and Bray, G. A., 1993b, The peptide enterostatin may produce early satiety, Physiol. Behav. 53:789–794.PubMedCrossRefGoogle Scholar
  35. Lin, L., Chen, J., and York, D. A., 1997, Chronic ICV enterostatin preferentially reduced fat intake and lowered body weight,Peptides 18:651–655.CrossRefGoogle Scholar
  36. Mei, J., and Erlanson-Albertsson, C., 1992, Effect of enterostatin given intravenously and intracerebroventricularly on high-fat feeding in rats, Regul. Pept. 41:209–218.PubMedCrossRefGoogle Scholar
  37. Mei, J., and Erlanson-Albertsson, C., 1996a, Plasma insulin response to enterostatin and effect of adrenalectomy in rat, Obes. Res. 4:513–519.PubMedCrossRefGoogle Scholar
  38. Mei, J., and Erlanson-Albertsson, C., 1996b, Role of intraduodenally administered enterostatin in rat: Inhibition of food intake, Obes. Res.4:161–165.PubMedCrossRefGoogle Scholar
  39. Mei, J., Cheng, Y., and Erlanson-Albertsson, C., 1993a, Enterostatin-Its ability to inhibit insulin secretion and to decrease high-fat food intake, Int. J. Obes. 17:701–704.Google Scholar
  40. Mei, J., Bowyer, R. C., Jehanli, A.M.T., Patel, G., and Erlanson-Albertsson, C., 1993b, Identification of enterostatin, the pancreatic procolipase activation peptide, in the intestine of rat: Effect of CCK-8 and high-fat feeding, Pancreas 8:488–493.PubMedCrossRefGoogle Scholar
  41. Mei, J., Bouras, M., and Erlanson-Albertsson, C., 1997, Inhibition of insulin release by intraduodenally infused enterostatin-VPDPR in rats, Peptides 18:651–655.PubMedCrossRefGoogle Scholar
  42. Mizuma, H., Abadie, J., and Prasad, C., 1994, Corticosterone facilitation of inhibition of fat intake by enterostatin (Val-Pro-Asp-Pro-Arg), Peptides 15:447–452.PubMedCrossRefGoogle Scholar
  43. Nagase, H., Bray, G. A., and York, D. A., 1997, Effect of galanin and enterostatin on sympathetic nerve activity to intrascapular brown adipose tissue, Brain Res. 709:44–50.CrossRefGoogle Scholar
  44. Okada, S., York, D. A., Bray, G. A., and Erlanson-Albertsson, C., 1991, Enterostatin (Val-Pro-Asp-Pro-Arg) the activation peptide of procolipase selectively reduces fat intake, Physiol. Behav.49:1185–1189.PubMedCrossRefGoogle Scholar
  45. Okada, S., York, D. A., Bray, G. A., Mei, J., and Erlanson-Albertsson, C., 1992, Differential inhibition of fat intake in two strains of rat by the peptide enterostatin, Amer. J. Physiol. 262:R1111–R1116.PubMedGoogle Scholar
  46. Okada, S., Onai, T., Kilroy, G., York, D. A., and Bray, G. A., 1993a, Adrenalectomy of the obese Zucker rat: Effects on the feeding response to enterostatin and specific mRNA levels,Amer. J. Physiol. 265:R21–R27.PubMedGoogle Scholar
  47. Okada, S., Lin, L., York, D. A., and Bray, G. A., 1993b, Chronic effects of intracerebral ventricular enterostatin in Osborne-Mendel rats fed a high-fat diet, Physiol. Behav. 54:325–330.PubMedCrossRefGoogle Scholar
  48. Okada, S., York, D. A., and Bray, G. A., 1993c, Procolipase mRNA: Tissue localization and effects of diet and adrenalectomy, Biochem. J. 292:787–789.PubMedGoogle Scholar
  49. Ookuma, K., Barton, C., York, D. A., and Bray, G. A., 1997, Effect of enterostatin and kappa-opioids on macronutrient selection and consumption, Peptides 18:785–791.PubMedCrossRefGoogle Scholar
  50. Pan, D. H., Hulbert, A. J., and Storlien, L. H., 1994, Dietary fats, membrane phospholipids and obesity,J. Nutr. 124:1555–1565.PubMedGoogle Scholar
  51. Paz, K., Voliovitch, H., Hadari, Y. R., Roberts, C. T., LeRoith, D., and Zick, Y., 1996, Interaction beween the insulin receptor and its downstream effectors. Use of individually expressed receptor domains for structure/function analysis, J. Biol. Chem. 271:6998–7003.PubMedCrossRefGoogle Scholar
  52. Pierzynowski, S. G., Erlanson-Albertsson, C., Podgurniak, P., Kiela, P., and Weström B., 1994, Possible integration of the electrical activity of the duodenum and pancreas secretion through enterostatin, Biomed. Res. 15(Suppl. 2):257–260.Google Scholar
  53. Rippe, C., and Erlanson-Albertsson, C., 1998, Identification of enterostatin and the relationship between lipase and colipase in various species, Nutritional Neuroscience 1:111–117.Google Scholar
  54. Schmitz Peiffer, C., Browne, C. L., Oakes, N. D., Watkinson, A., Chisholm, D. J., Kraegen, E. W., and Biden, T. J., 1997, Alterations in the expression and cellular localization of protein kinase C isozymes ε and ϕ are assocoated with insulin resistance in skeletal muscle of the high-fat fed rat, Diabetes 46:169–178.PubMedCrossRefGoogle Scholar
  55. Shafrir, E., and Gutman, A., 1993, Psammomys obesus of the Jerusalem colony: Amodel for nutritionally induced, non-insulin dependent diabetes, J. Basic Clin. Physiol. Pharmacol.4:83–99.PubMedCrossRefGoogle Scholar
  56. Shargill, N. S., Tsujii, S., Bray, G. A., and Erlanson-Albertsson, C., 1991, Enterostatin suppresses food intake following injection into the third ventricle of rats, Brain Res. 544:137–140.PubMedCrossRefGoogle Scholar
  57. Shor-Posner, G., Brennan, G., Ian, C., Jasaitis, R., Madhu, K., and Leibowitz, S. F., 1994, Meal patterns of macronutrient intake in rats with particular dietary preferences, Am. J. Physiol. 266:R1395–R1402.PubMedGoogle Scholar
  58. Silvestre, R. A., Rodrigeux-Gallardo, J., and Marco, J., 1996, Effect of enterostatin on insulin, glucagon and somatostatin secretion in the perfused rat pancreas, Diabetes 45:1157–1160.PubMedCrossRefGoogle Scholar
  59. Smith, B. K., York, D. A., and Bray, G. A., 1997, Chronic d-fenfluramine treatment reduces fat intake and increases carbohydrate intake in rats, Pharmacol. Biochem. Behav. 18:207–211.Google Scholar
  60. Sörhede, M., Mei, J., and Erlanson-Albertsson, C., 1993, Enterostatin-a gut-brain peptide-regulating fat intake in rat, J. Physiol. (Paris) 87:273–275.CrossRefGoogle Scholar
  61. Sörhede, M., Erlanson-Albertsson, C., Mei, J., Nevalainen, T., Aho, A., and Sundler, F., 1996a, Enterostatin in gut endocrine cells-Immunocytochemical evidence, Peptides 17:609–614.PubMedCrossRefGoogle Scholar
  62. Sörhede, M., Mulder, H., Mei, J., Sundler, F., and Erlanson-Albertsson, C., 1996b, Procolipase is produced in the rat stomach-a novel source of enterostatin. Biochim Biophys Acta. 1301:207–212.PubMedCrossRefGoogle Scholar
  63. Sörhede-Winzell, M., 1998, Enterostatin in the gastrointestinal tract: Production and possible mechanism of action. Ph.D. diss., University of Lund.Google Scholar
  64. Stanley, B. G., Daniel, D. R., Chin, A. S., and Leibowitz, S. F., 1985, Paraventricular nucleus injection of peptide YY and neuropeptide Y preferentially enhance carbohydrate ingestion, Peptides 6:1205–1211.PubMedCrossRefGoogle Scholar
  65. Steffens, A. B., Strubbe, J. H., Balkan, B., and Scheurink, A. J., 1991, Neuroendocrine factors regulating blood glucose, plasma FFA and insulin in the development of obesity, Brain Res. Bull. 27:505–510.PubMedCrossRefGoogle Scholar
  66. Tempel, D. L., Leibowitz, K. J., and Leibowitz, S. F., 1988, Effects of PVN galanin on macronutrient selection, Peptides 9:309–314.PubMedCrossRefGoogle Scholar
  67. Thomas, C. D., Peters, J. C., Reed, G. W., Abumrad, N. N., Sun, M., and Hill, J. O., 1992, Nutrient balance and energy expenditure during ad libitum feeding of high-fat and high-carbohydrate diets in humans, Am. J. Clin. Nutr. 55:934–942.PubMedGoogle Scholar
  68. Tian, Q., Nagase, H., York, D. A., and Bray, G. A., 1994, Vagal-central nervous system interactions modulate the feeding response to peripheral enterostatin, Obes. Res. 2:527–534.PubMedCrossRefGoogle Scholar
  69. Townsley, M. I., Erlanson-Albertsson, C., Ohlsson, A., Rippe, C., and Reed, R. K., 1996, Enterostatin efflux in cat intestinal lymph: Relation to lymph flow, hyaluronan and fat absorption, Am. J. Physiol. 271:G714–G721.PubMedGoogle Scholar
  70. Van Amelsvoort, J. M., Van Stratum, R, Kraal, J. H., Lussenberg, R. N., and Houtsmuller, V. M. T., 1988, Effects of varying the carbohydrate: fat ratio in a hot lunch on postprandial variables in male volunteers, Br. J Nutr. 61:267–283.CrossRefGoogle Scholar
  71. Vanderweele, D. A., and Macrum, B. L., 1986, Glucagon, satiety from feeding and liver pancreatic interactions, Brain Res. Bull. 17:539–543.PubMedCrossRefGoogle Scholar
  72. Wicker, C., and Puigserver, A., 1987, Effects of inverse changes in dietary lipid and carbohydrate on the synthesis of some pancreatic secretory proteins, Eur. J. Biochem. 162:25–30.PubMedCrossRefGoogle Scholar
  73. Wurtman, J., Wurtman, R., Berry, E., Gleason, R., Goldberg, H., McDermott, J., Kahne, M., and Tsay, R., 1993, Dexfenfluramine, fluoxetine, and weight loss among female carbohydrate cravers, Neuropsychopharmacol. 9:201–210.Google Scholar
  74. York, D. A., 1992, Central regulation of appetite and autonomic activity by CRH, glucocorticoids and stress, Prog. Neuroendoc. Immunol.5:153–165.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Charlotte Erlanson-Albertsson
    • 1
  1. 1.Department of Cell and Molecular Biology, Section for Molecular SignallingUniversity of LundLundSweden

Personalised recommendations