Inhibitors of Chylomicron Formation and Secretion

  • John B. Rodgers


Most of the lipid absorbed by the enterocytes leaves these cells as reesterified lipid in the form of chylomicrons (CM). CM formation and secretion is a complex process requiring proteins, phospholipids, and cholesterol in addition to triacylglycerols to form these lipoprotein particles. The first three compounds are also required to synthesize membranes and enzymes located in these absorbing cells that are involved in this process. The first step involved in CM formation is the reesterification of the products of triacylglycerol digestion, fatty acids and monoacylglycerols, that have been absorbed into the enterocytes (Johnson, 1978; Thomson and Dietschy, 1981). There are two pathways for reesterification in the enterocytes. The more important pathway for reesterification of the absorbed products of digested dietary lipid is the monoglyceride pathway, which utilizes 2-monoglyceride and free fatty acids as substrates (Mattson and Volpenhein, 1964). This involves reesterifying enzymes located on the cytoplasmic surface of the smooth endoplasmic reticulum (Bell et al., 1981). As 2-monoacylglycerol is present in the enterocytes in significant amounts during the process of digestion and absorption of a lipid meal, this pathway is obviously efficient. The other pathway for triacylglycerol synthesis utilizes α-glycerol phosphate to donate the glycerol portion of the molecule and is therefore known as the a-glycerol phosphate pathway (Johnson, 1978). This pathway, which involves more steps than the monoglyceride pathway and is therefore less rapid, has to be utilized when triacylglycerol is being synthesized by the enterocytes under conditions when no 2-monoacylglycerol is being absorbed, which is the case while fasting.


Cholesteryl Ester Essential Fatty Acid Deficiency Intestinal Lymph Large Lipid Droplet Intestinal Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, C. A., Hamilton, R. L., and Havel, R. L., 1976, Subcellular localization of B apoprotein of plasma lipoproteins in the rat liver, J. Cell Biol 69:241–263.PubMedCrossRefGoogle Scholar
  2. Bell, R. M., Ballas, L. M., and Coleman, R. A., 1981, Lipid topogenesis, J. Lipid Res. 22:391–403.PubMedGoogle Scholar
  3. Bochenek, W. J., and Rodgers, J. B., 1977, Effect of polyol detergents on cholesterol and triglyceride absorption: Hypolipidemic action of chronic administration of hydrophobic detergent, Biochim. Biophys. Acta 489:503 506.PubMedCrossRefGoogle Scholar
  4. Bochenek, W. J., Weber, R, Slowinska, R., Tang, G., and Rodgers, J. B., 1990, Carbohydrate content of Apolipoprotein B-48 from rat chylomicrons of varying density, Lipids 25:665–668.PubMedCrossRefGoogle Scholar
  5. Brunelle, C. W., Bochenek, W. J., Abraham, R., Kim, D. N., and Rodgers, J. B., 1979, Effect of hydrophobic detergent on lipid absorption in the rat and on lipid and sterol balance in the swine, Dig. Dis. Sci. 24:718–725.PubMedCrossRefGoogle Scholar
  6. Cardell, R. R., Jr., Badenhausen, S., and Porter, K. R., 1967, Intestinal triglyceride absorption in the rat. An electron microscopic study, J. Cell Biol. 34:123–155.PubMedCrossRefGoogle Scholar
  7. Chen, S. H., Habib, G., Yank, C. Y, Gu, G. W., Lee, B. R., Wang, S. A., Silberman, S. R., Cai, S. J., Deslypere, J. P., Rosseneu, M., Jr., Gotto, A. M., Li, W. H., and Chen, L., 1987, Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon, Science 238:363–366.PubMedCrossRefGoogle Scholar
  8. Clark, S. B., 1978, Chylomicron composition during duodenal triglyceride and lecithin infusion, Am. J. Physiol. 235 (Endocrinol. Metab. 2):E183–E190.PubMedGoogle Scholar
  9. Clark, S. B., Ekkers, T. E., Singh, A., Balint, J. A., Holt, P. R., and Rodgers, J. B., Jr., 1973, Fat absorption in essential fatty acid deficiency: A model experimental approach to studies of the mechanism of fat malabsorption of unknown etiology, J. Lipid Res. 14:581–588.PubMedGoogle Scholar
  10. Davis, R. A., 1993, The endoplasmic reticulum is the site of lipoprotein assembly and regulation of secretion, in: Subcellular Biochemistry, Endoplasmic Reticulum 21 (N. Borgese and J. R. Harris, eds.), Plenum Press, New York,pp.l69–187.Google Scholar
  11. Davis, R. A., Thrift, R. N., Wu, C. C, and Howell, K. E., 1990, Apolipoprotein B is both integrated into and translocated across the endoplasmic reticulum membrane, J. Biol. Chem. 265:10005–10011.PubMedGoogle Scholar
  12. Dobbins, W. O., 1970, An ultrastructural study of the intestinal mucosa in congenital B-lipoprotein deficiency with particular emphasis of intestinal absorptive cells, Gastroenterol. 50:195–210.Google Scholar
  13. Garcia, Z. C, Poksay, K. S., Bostrom, K., Johnson, D. E, Balestra, M. E., Shechter, I., and Innerarity, T. L., 1992, Characterization of apolipoprotein B mRNA editing from rabbit intestine, Arterioscler. Thromb. 12:172–179.PubMedCrossRefGoogle Scholar
  14. Glickman, R. M., and Kirsch, K., 1973, Lymph chylomicron formation during the inhibition of protein synthesis: Studies of chylomicron apoproteins, J. Clin. Invest. 52:2910–2920.PubMedCrossRefGoogle Scholar
  15. Glickman, R. M., Kirsch, K., and Isselbacher, K. J., 1972, Fat absorption during inhibition of protein synthesis: Studies of lymph chylomicrons, J. Clin. Invest. 51:356–363.PubMedCrossRefGoogle Scholar
  16. Goldberg, D. E., and Kornfeld, S., 1983, Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal phosphorylation, J. Biol. Chem. 258:3159–3165.PubMedGoogle Scholar
  17. Halpern, J., Tso, P., and Mansbach, C. M., II, 1988, Mechanism of lipid mobilization by the small intestine after transport blockade, J. Clin. Invest. 82:74–81.PubMedCrossRefGoogle Scholar
  18. Hayashi, H., Fujimoto, K., Cardell, J. A., Nutting, D. E, Bergstedt, S., and Tso, P., 1990, Fat feeding increases size, but not the number, of chylomicrons produced by small intestine, Am. J. Physiol. 259 (Gastroinst. Liver Physiol. 22):G709–G719.PubMedGoogle Scholar
  19. Hayashi, H., Nakata, K., Motohashi, Y., and Takano, T., 1992, Acute inhibition of lipid transport in rat intestinal lymph by ethanol administration, Alcohol Alcoholism 27:627–632.Google Scholar
  20. Huang, L. S., Inne, P. A., De, G. J., Cooper, M., Decklebaum, R. J., Kayden, H., and Breslow, J. L., 1990, Exclusion of linkage between the human apolipoprotein B gene and abetalipoproteinemia, Am. J. Hum. Genet. 46:1141–1148.PubMedGoogle Scholar
  21. Johnson, J. M., 1978, Esterification reactions in the intestinal mucosa and lipid absorption, in: Disturbances in Lipid and Lipoprotein Metabolism (J. M. Dietschy, A. M. Gotto, Jr., and J. A. Ontko, eds.), American Physiologic Society, Bethesda, MD, pp. 57–68.Google Scholar
  22. Kennedy, E., 1961, Biosynthesis of complex lipids, Federation Proc. 20:934–940.Google Scholar
  23. Kumar, N. S., and Mansbach, C. M., 1997, Determinants of triacylglycerol transport from the endoplasmic reticulum to the Golgi in intestine, Am. J. Physiol. 273(Gastrointest. Liver Physiol. 36):G18–G30.PubMedGoogle Scholar
  24. Levy, E., Marcel, Y., Deckelbaum, R. J., Milne, R., Lepage, G., Seidman, E., Bendayan, M., and Roy, C. C, 1987, Intestinal apo B synthesis, lipids, and lipoproteins in chylomicron retention disease, J. Lipid Res. 28:1263–1274.PubMedGoogle Scholar
  25. Levy, E., Garofalo, C, Thibault, L., Dionne, S., Daoust, L., Lapage, G., and Roy, C. C, 1992a, Intralumenal and intracellular phases of fat absorption in essential fatty acid deficiency, Am. J. Physiol. 262 (Gastrointest. Liver Physiol. 25):G319–G326.PubMedGoogle Scholar
  26. Levy, E., Smith, L., Dumont, L., Garceau, D., Garofalo, C, Thibault, L., and Seidman, E., 1992b, The effect of a new calcium channel blocker (TA-3090) on lipoprotein profile and intestinal lipid handling in rodents, Proc. Soc. Expl. Biol Med. 199:128–135.Google Scholar
  27. Manowitz N. R., Tso, P., Drake, D. S., Frase, S., and Sabesin, S. M., 1986, Dietary supplementation with Pluron L-81 modifies hepatic secretion of very low-density lipoproteins in the rat, J. Lipid Res. 26:196–207.Google Scholar
  28. Mansbach, C. M., II, 1977, The origin of chylomicron phosphatidylcholine in the rat, J. Clin. Invest. 60:411–420.PubMedCrossRefGoogle Scholar
  29. Mansbach, C. M., II, 1983, Effect of ethanol on intestinal lipid absorption in the rat, J. Lipid Res. 24:1310–1320.PubMedGoogle Scholar
  30. Mansbach, CM., II, and Arnold, A., 1986, Steady-state kinetic analysis of triacylglycerol delivery into mesenteric lymph, Am. J. Physiol. 251 (Gastrointest. Liver Physiol. 14):G263–G269.PubMedGoogle Scholar
  31. Mansbach, C. M., II, and Nevin, P., 1994, Effect of brefeldin A on lymphatic triacylglycerol transport in the rat, Am. J. Physiol. 266 (Gastrointest. Liver Physiol. 29):G292–G302.PubMedGoogle Scholar
  32. Mansbach, C. M., II, Arnold, A., and Cox, M. A., 1985, Factors influencing triacylglycerol delivery into mesenteric lymph, Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12):G642–G648.PubMedGoogle Scholar
  33. Mattson, F. H., and Volpenhein, R. A., 1964, The digestion and absorption of triglycerides, J. Biol. Chem. 239:2772–2777.PubMedGoogle Scholar
  34. nNilsson, A., 1968, Intestinal absorption of lecithin and lysolecithin by lymph fistula rats, Biochim. Biophys. Acta 152:379–390.CrossRefGoogle Scholar
  35. Nutting, D. F, and Tso, P., 1989, Hypolipidemic effect of intravenous Pluronic L-81 in fasted fats treated with Triton WR-1339: Possible inhibition of hepatic lipoprotein secretion, Horm. Metabol. Res. 21:113–115.CrossRefGoogle Scholar
  36. Ockner, R. K., Hughes, F. B., and Isselbacher, K. J., 1964, Very low density lipoproteins in intestinal lymph: Role in triglyceride and cholesterol transport during fat absorption, J. Clin. Invest. 48:2367–2373.CrossRefGoogle Scholar
  37. O’Doherty, P. J., Kakis, G., and Kuskis, A., 1973, Role of luminal lecithin in intestinal fat absorption, Lipids 8:249–255.CrossRefGoogle Scholar
  38. Powell, L. M., Wallis, S. C, Pease, R. J., Edwards, Y. H., Knott, T. J., and Scott, J., 1987, A novel form of tissue specific RNA producing produces apolipoprotein B in intestine, Cell 50:831–840.PubMedCrossRefGoogle Scholar
  39. Reger, J. F., Frase, S., and Tso, P., 1989, Fine structure observations on rat jejunal epithelial cells during fat processing and resorption following L-81 exposure and reversal, J. Submicrosc. Cytol. Pathol, 21:399–408.PubMedGoogle Scholar
  40. Rodgers, J. B., Kyriakides, E. C, Kapuscinska, B., Peng, S. K., and Bochenek, W. J., 1983, Hydrophobic surfactant treatment prevents atherosclerosis in the rabbit, J. Clin. Invest. 71:1490–1494.PubMedCrossRefGoogle Scholar
  41. Rodgers, J. B., Friday, S., and Bochenek, W. J., 1984, Absorption and excretion of the hydrophobic surfactant, 14C-Poloxalene 2930, in the rat, Drug Metab. Disposition 12:631–634.Google Scholar
  42. Rodgers, J. B., Slowinska, R., and Bochenek, W. J., 1987, Hydrophobic surfactant effects on aortic cholesterol accumulation and atherosclerosis in hypercholesterolemic rabbits, Atherosclerosis 64:37–46.PubMedCrossRefGoogle Scholar
  43. Rodgers, J. B., Tang, G., and Bochenek, W. J., 1989, Hydrophobic surfactant inhibits hypercholesterolemia in pair-fed rabbits on a cholesterol-free, low fat diet, Am. J. Med. Sci. 296:177–181.CrossRefGoogle Scholar
  44. Rodgers, J. B., Gray, L., and Tso, P., 1993, Treatment with hydrophobic surfactant inhibits chylomicron metabolism, Clin. Res. 41:389A.Google Scholar
  45. Rodgers, J. B., Beeler, D. A., and Tso, P., 1996, Relationship of phosphatidylcholine to hydrophobic surfactant on rat intestinal chylomicron secretion, Experientia 52:671–676.PubMedCrossRefGoogle Scholar
  46. Sabesin, S. M., and Isselbacher, K. J., 1965, Protein synthesis inhibition: Mechanism for production of impaired fat absorption, Science 147:1149–1151.PubMedCrossRefGoogle Scholar
  47. Sabesin, S. M., and Frase, S., 1977, Electron microscopic studies in the assembly, intracellular transport, and secretion of chylomicrons by rat intestine, J. Lipid Res. 18:496–511.PubMedGoogle Scholar
  48. Sabesin, S. M., Clark, S. B., and Holt, P. R., 1977, Ultrastructural features of regional differences in chylomicron secretion by rat intestine, Expl. Molec. Pathol. 26:277–289.CrossRefGoogle Scholar
  49. Strauss, E. W., and Jacobs, J. S., 1981, Some factors affecting the lipoprotein secretory phase of fat absorption by intestine in vitro from golden hamster, J. Lipid Res. 22:147–156.PubMedGoogle Scholar
  50. Talmud, P. J., Lloyd, J. K., Muller, D. P. R., Collins, D. R., Scott, J., and Humphries, S., 1988, Genetic evidence that the apolipoprotein B gene is not involved in abetalipoproteinemia, J. Clin. Invest. 82:1803–1806.PubMedCrossRefGoogle Scholar
  51. Thomson, A. B. R., and Dietschy, J. M., 1981, Intestinal lipid absorption: Major extracellular events, in: Physiology of the Gastrointestinal Tract (L. R. Johnson, ed), Raven Press, New York, pp. 1147–1220.Google Scholar
  52. Tso, P., Balint, J. A., and Rodgers, J. B., 1980, Effect of hydrophobic surfactant (Pluronic L-81) on lymphatic lipid transport in the rat, Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2):G348–G353.PubMedGoogle Scholar
  53. Tso, P., Balint, J. A., Bishop, M. B., and Rodgers, J. B., 1981a, Acute inhibition of intestinal lipid transport by Pluronic L-81 in the rat, Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4):G487–G497.PubMedGoogle Scholar
  54. Tso, P., Kendrick, H., Balint, J. A., and Simmonds, W. J., 1981b, Role of biliary phosphatidylcholine in the absorption and transport of dietary triolein in the rat, Gastroenterol. 80:60–65.Google Scholar
  55. Tso, P., Buch, K. L., Balint, J. A., and Rodgers, J. B., 1982, Maximal lymphatic triglyceride transport rate from the rat small intestine, Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5):G408–G415.PubMedGoogle Scholar
  56. Tso, P., Drake, D. S., Black, D. D., and Sabesin, S. M., 1984, Evidence for separate pathways of chylomicron and very low-density lipoprotein assembly and transport by rat small intestine, Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10):G599–G610.PubMedGoogle Scholar
  57. Tso, P., Pitts, V., and Granger, D. N., 1985, Role of lymph flow in intestinal chylomicron transport, Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12):G21–G28.PubMedGoogle Scholar
  58. Wetterau, J. R., and Zilversmit, D. B., 1984, A triglyceride and cholesteryl ester transfer protein associated with liver microsomes,J. Biol. Chem. 259:10863–10866.PubMedGoogle Scholar
  59. Wetterau, J. R., and Zilversmit, D. B., 1985, Purification and characterization of microsomal triglyceride and cholesteryl ester transfer protein from bovine liver microsomes, Chem. Phys. Lipids 38:205–222.PubMedCrossRefGoogle Scholar
  60. Wetterau, J. R., and Zilversmit, D. B., 1986, Localization of intracellular triacylglycerol and cholesteryl ester transfer activity in rat tissue, Biochim. Biophys. Acta 875:610–617.PubMedCrossRefGoogle Scholar
  61. Wetterau, J. R., Aggerbeck, L. A., Bouma, M. E., Eisenberg, C, Munck, A., Hermier, M., Schmitz, J., Gay, G., Rader, D. J., and Gregg, R. E., 1992, Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia, Science 258:999–1001.PubMedCrossRefGoogle Scholar
  62. Yang, L. Y, and Kuksis, A., 1991, Apparent convergence (at 2-monoacylglycerol level) of phosphatidic acid and 2-monoacylglycerol pathways of synthesis of chylomicron triacylglycerols, J. Lipid Res. 32:1173–1186.PubMedGoogle Scholar
  63. Zimmerman, J., Gati, I., Eisenberg, S., and Rachmilewitz, D., 1986, Ethanol inhibits triglyceride synthesis and secretion by human small intestinal mucosa, J. Lab. Clin. Med. 107:498–501.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • John B. Rodgers
    • 1
  1. 1.Department of MedicineAlbany Medical CollegeAlbany

Personalised recommendations