Skip to main content

Regulation of Intestinal Cholesterol Metabolism

  • Chapter

Abstract

The amount of unesterified cholesterol within a mammalian cell is tightly controlled. Cells lack a mechanism to degrade cholesterol and excess accumulation of this sterol will cause cell death. The means by which the cell procures cholesterol, therefore, must be closely regulated. Importantly, however, cholesterol is also required for a multitude of critical cellular functions. Thus, it is vital that the cell maintain an ample and continuous supply of this sterol. For example, cholesterol is necessary for normal membrane structure and function; it is required for cell growth; cholesterol regulates the activities of key enzymes and membrane transport proteins; it is a precursor for vitamins, bile acids, and steroid hormones; and in liver and intestine, it is important for normal lipoprotein synthesis and secretion. This critical balancing act by the cell to have sufficient sterol to function normally but not too much to cause cholesterol excess has implications for the development of atherosclerotic heart and peripheral vascular disease, stroke, and cholelithiasis. Because cholesterol is central to these disease states and, therefore, has an important impact on the general health of a population, the regulation of cholesterol metabolism has been extensively studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, J. M., and Dietschy, J. M., 1976, Cholesterogenesis: Derepression in extrahepatic tissues with 4-aminopyrazolo [3,4-d] pyrimidine, Science 193:903–905.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, J. M., Turley, S. D., and Dietschy, J. M., 1982, Relative rates of sterol synthesis in the liver and various extrahepatic tissues of normal and cholesterol-fed rabbits. Relationship to plasma lipoprotein and tissue cholesterol levels, Biochim. Biophys. Acta 711:421–430.

    Article  PubMed  CAS  Google Scholar 

  • Beg, Z. H., Stonik, J. A, and Brewer, J. B., Jr., 1987, Modulation of the enzymic activity of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase by multiple kinase systems involving reversible phosphorylation: A review, Metabolism 36:900–917.

    Article  PubMed  CAS  Google Scholar 

  • Beil, F. U., and Grundy, S. M., 1980, Studies on plasma lipoproteins during absorption of exogenous lecithin in man, J. Lipid Res. 21:525–536.

    PubMed  CAS  Google Scholar 

  • Bennett-Clark, S., 1979, Mucosal coenzyme A-dependent cholesterol esterification after intestinal perfusion of lipids in rats, J. Biol Chem. 254:1534–1536.

    Google Scholar 

  • Bhattacharyya, A. K., 1981, Uptake and esterification of plant sterols by rat small intestine, Am. J. Physiol. 240:G50–55.

    PubMed  CAS  Google Scholar 

  • Bloch, K., 1965, The biological synthesis of cholesterol, Science 150:19–28.

    Article  PubMed  CAS  Google Scholar 

  • Bochenek, W. J., and Rogers J. B., 1979, Dietary regulation of 3-hydroxy-3-methylgutaryl-CoA reductase from rate intestine, Biochem. Biophys. Acta 575:57–62.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M. S., and Goldstein, J. L., 1980, Multivalent feedback regulation of HMG-CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth, J. LipidRes. 21:505–517.

    CAS  Google Scholar 

  • Brown, M. S., and Goldstein, J. L., 1986, A receptor-mediated pathway for cholesterol homeostasis, Science 232:34–47.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M. S., and Goldstein, J. L., 1997, The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor, Cell 89:331–340.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M. S., Goldstein, J. L., and Dietschy, J. M., 1979, Active and inactive forms of 3-hydroxy-3-methylglu-taryl coenzyme A reductase in the liver of the rat, J. Biol. Chem. 254:5144–5149.

    PubMed  CAS  Google Scholar 

  • Chang, C. C. Y., Huh, H. Y., Cadigan, K. M., and Chang, T. Y., 1993, Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells, J. Biol. Chem. 268:20747–20755.

    PubMed  CAS  Google Scholar 

  • Chang, T. Y., Chang, C. C. Y., and Cheng, D., 1995, Acyl-coenzyme A:cholesterol acyltransferanse, J. Biol. Chem. 270:29532–29540.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, D., Chang, C. C. Y., Qu, X., and Chang, T. Y., 1995, Activation of acyl-coenzyme A: Cholesterol acyltransferase (ACAT) by cholesterol or by oxysterol in a cell-free system, J. Biol. Chem. 270:685–695.

    Article  PubMed  CAS  Google Scholar 

  • Child, P., and Kuksis, A., 1983, Critical role of ring structure in the differential uptake of cholesterol and plant sterols by membrane preparations in vitro, J. Lipid Res. 24:1196–1209.

    PubMed  CAS  Google Scholar 

  • Clarke, P. R., and Hardie, D. G., 1990, Regulation of HMG-CoA reductase: Identification of the site phosphory-lated by the AMP-activated protein kinase in vitro and in intact rat liver, EMBO J. 9:2439–2446.

    PubMed  CAS  Google Scholar 

  • Corton, J. M., and Hardie, D. G., 1992, Evidence against a role for phosphorylation/dephosphorylation in the regulation of acyl-CoA:cholesterol acyltransferase, Eur. J. Biochem. 204:203–208.

    Article  PubMed  CAS  Google Scholar 

  • Debry, P., Nash, E. A., Neklason, D. W., and Metherall, J. E., 1997, Role of multidrug resistance P-glycoproteins in cholesterol esterification. J. Biol. Chem. 272:1026–1031.

    Article  PubMed  CAS  Google Scholar 

  • Dietschy, J. M., and Gamel, W. G., 1971, Cholesterol synthesis in the intestine of man: Regional differences and control mechanisms, J. Clin. Invest. 50:872–880.

    Article  PubMed  CAS  Google Scholar 

  • Dietschy, J. M., and Siperstein, M. D., 1965, Cholesterol synthesis by the gastrointestinal tract: Localization and mechanisms of control. J. Clin. Invest. 44:1311–1327.

    Article  PubMed  CAS  Google Scholar 

  • Dietschy, J. M., and Siperstein, M. D., 1967, Effect of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat, J. Lipid Res. 8:97–104.

    PubMed  CAS  Google Scholar 

  • Dietschy, J. M., and Wilson, J. D., 1968, Cholesterol synthesis in the squirrel monkey: Relative rates of synthesis in various tissues and mechanisms of control, J. Clin. Invest. 47:166–174.

    Article  PubMed  CAS  Google Scholar 

  • Dietschy, J. M., Salomon, H. S., and Siperstein, M. D., 1966, Bile acid metabolism. I. Studies on the mechanisms of intestinal transport, J. Clin. Invest. 45:832–846.

    Article  PubMed  CAS  Google Scholar 

  • Drevon, C. A., Lilljeqvist, A-C., Schreiner, B., and Norum, K. R., 1979, Influence of cholesterol/fat feeding on cholesterol esterification and morphological structures in intestinal mucosa from guinea pigs, Atherosclerosis 34:207–219.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, P. A., Lan, S.-F., Tanaka, R. D., and Fogelman, A. M., 1983, Mevalonolactone inhibits the rate of synthesis and enhances the rat of degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in rat hepatocytes, J. Biol. Chem. 258:7272–7275.

    PubMed  CAS  Google Scholar 

  • Faust, J. R., Luskey, R. K., Chin, J., Goldstein, J. L., and Brown, M. S., 1982, Regulation of synthesis and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by low density lipoprotein and 25-hydroxy-cholesterol in UT-1 cells, Proc. Natl. Acad. Sci. USA 79:5205–5209.

    Article  PubMed  CAS  Google Scholar 

  • Feingold, K. R., 1989, Importance of small intestine in diabetic hypercholesterolemia, Diabetes 38:141–145.

    Article  PubMed  CAS  Google Scholar 

  • Field, F. J., and Mathur, S. N., 1983a, β-sitosterol: Esterification by intestinal acylcoenzyme A:cholesterol acyltransferase (ACAT) and its effect on cholesterol esterification, J. Lipid Res. 24:409–417.

    PubMed  CAS  Google Scholar 

  • Field, F. J., and Mathur, S. N., 1983b, Regulation of acyl CoA: cholesterol acyltransferase by 25-hydroxycholes-terol in rabbit intestinal microsomes and absorptive cells, J. Lipid Res. 24:1049–1059.

    PubMed  CAS  Google Scholar 

  • Field, F. J., and Mathur, S. N., 1995, Intestinal lipoprotein synthesis and secretion, Prog. Lipid Res. 34:185–198.

    Article  PubMed  CAS  Google Scholar 

  • Field, F. J., and Salome, R. G., 1982, Effect of dietary fat saturation, cholesterol and cholestyramine on acyl-CoA: cholesterol acyltransferase activity in rabbit intestinal microsomes, Biochim. Biophys. Acta 12:557–570.

    Google Scholar 

  • Field, F. J., Erickson, S. K., Shrewsbury, M. A., and Cooper, A. D., 1982a, 3-Hydroxy-3-methylglutaryl coenzyme A reductase from rat intestine: Subcellular localization and in vitro regulation, J. Lipid Res. 23:105–113.

    PubMed  CAS  Google Scholar 

  • Field, F. J., Cooper, A. D., and Erickson, S. K., 1982b, Regulation of rabbit intestinal acyl coenzyme A-choles-terol acyltransferase in vivo and in vitro, Gastroenterol. 83:873–880.

    CAS  Google Scholar 

  • Field, F. J., Hennig, B, and Mathur, S. N., 1984, In vitro regulation of 3-hydroxy-3-methylglutarylcoenzyme A reductase and acylcoenzyme A: cholesterol acyltransferase activities by phosphorylation-dephosphorylation in rabbit intestine, Biochim. Biophys. Acta 802: 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Field, F. J., Albright, E., and Mathur, S. N., 1986, The effect of hypothyroidism and thyroxine replacement on hepatic and intestinal HMG-CoA reductase and ACAT activities and biliary lipids in the rat, Metabolism 35:1085–1089.

    Article  PubMed  CAS  Google Scholar 

  • Field, F. J., Albright, E., and Mathur, S. N., 1987a, Effect of dietary n-3 fatty acids on HMG-CoA reductase and ACAT activities in liver and intestine of the rabbit, J. Lipid Res. 28:50–58.

    PubMed  CAS  Google Scholar 

  • Field, F. J., Albright, E., and Mathur, S. N., 1987b, Regulation of cholesterol esterification by micellar cholesterol in Caco-2 cells, J. Lipid Res. 28:1057–1066.

    PubMed  CAS  Google Scholar 

  • Field, F. J., Shreves, T., Fujiwara, D., Murthy, S., Albright, E., and Mathur, S. N., 1991, Regulation of gene expression and synthesis and degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by micellar cholesterol in Caco-2 cells, J. Lipid Res. 32:1811–1821.

    PubMed  CAS  Google Scholar 

  • Field, F. J., Fujiwara, D., Born, E., Chappell, D. A., and Mathur, S. N., 1993, Regulation of LDL receptor expression by luminal sterol flux in Caco-2 cells, Arterioscler. Thromb. 13:729–737.

    Article  PubMed  CAS  Google Scholar 

  • Field, F. J., Born, E., Chen, H., Murthy, S., and Mathur, S. N., 1994, Lysophosphatidylcholine increases the secretion of cholesteryl ester-poor triacylglycerol-rich lipoproteins by Caco-2 cells, Biochem. J. 304:35–42.

    PubMed  CAS  Google Scholar 

  • Field, F. J., Born, E., Chen, H., Murthy, S., and Mathur, S. N., 1995a, Esterification of plasma membrane cholesterol and triacylglycerol-rich lipoprotein secretion in CaCo-2 cells: Possible role of p-glycoprotein, J. Lipid Res. 36:1533–1543.

    PubMed  CAS  Google Scholar 

  • Field, F. J., Born, E., and Mathur, S. N., 1995b, Triacylglycerol-rich lipoprotein cholesterol is derived from the plasma membrane in Caco-2 cells, J. Lipid Res. 36:2651–2660.

    PubMed  CAS  Google Scholar 

  • Field, F. J., Born, E., and Mathur, S. N., 1997, Effect of micellar β-sitosterol on cholesterol metabolism in CaCo-2 cells, J. Lipid Res. 38:348–360.

    PubMed  CAS  Google Scholar 

  • Fong, L. G., Bonney, E, Kosek, J. C., and Cooper, A. D., 1989, Immunohistochemical localization of low density lipoprotein receptors in adrenal gland, liver, and intestine, J. Clin. Invest. 84:847–856.

    Article  PubMed  CAS  Google Scholar 

  • Fong, L. G., Fujishima, S. E., Komaromy, M. C., Pak, Y. K., Ellsworth, J. L., and Cooper, A. D., 1995, Location and regulation of low-density lipoprotein receptors in intestinal epithelium, Am. J. Physiol. 269: G60–72.

    PubMed  CAS  Google Scholar 

  • Gavey, K. L., Trujillo, D. L., and Scallen, T. J., 1983, Evidence for phosphorylation/deposphorylation of rat liver acyl-CoA: cholesterol acyltransferase, Proc. Natl. Acad. Sci. USA 80:2171–2174.

    Article  PubMed  CAS  Google Scholar 

  • Gebhard, R. L., and Cooper, A. D., 1978, Regulation of cholesterol synthesis in cultured canine intestinal mucosa, J. Biol. Chem. 8:2790–2796.

    Google Scholar 

  • Gebhard, R. L., and Prigge, W. F., 1981, In vivo regulation of canine intestinal 3-hydroxy-3-methylglutaryl coenzyme A reductase by cholesterol, lipoprotein, and fatty acids, J. Lipid Res. 22:1111–1118.

    PubMed  CAS  Google Scholar 

  • Gebhard, R. L., Stone, B. G., and Prigge, W. F., 1985, 3-Hydroxy-3-methylglutaryl coenzyme A reductase activity in the human gastrointestinal tract, J. Lipid Res. 26:47–53.

    PubMed  CAS  Google Scholar 

  • Goldstein, J. L., and Brown, M. S., 1990, Regulation of the mevalonate pathway, Nature 343:425–430.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, MW., Prigge, W. F., Gebhard, R. L., 1981, Hormonal regulation of canine intestinal cholesterol synthesis, Am. J. Physiol. 240:G274–G280.

    PubMed  CAS  Google Scholar 

  • Gould, R. G., Jones, R. J., LeRoy, G. V., Wissler, R. W., and Taylor, G. B., 1969, Absorbability of β-sitosterol in humans, Metabolism 18:652–662.

    Article  PubMed  CAS  Google Scholar 

  • Haugen, R., and Norum, K. R., 1976, Coenzyme-A-dependent esterification of cholesterol in rat intestinal mucosa, Scand. J. Gastroenterol. 11:615–621.

    PubMed  CAS  Google Scholar 

  • Heinemann, T., Kullak-Ublick G. A., Pietruck, B., and vonBergmann, K., 1991, Mechanisms of action of plant sterols on inhibition of cholesterol absorption. Comparison of sitosterol and sitostanol, Eur. J. Clin. Pharmacol 40:S59–73.

    PubMed  CAS  Google Scholar 

  • Helgerud P., Saarem, K., and Norum, K. R., 1981, Acyl-CoA: cholesterol acyl-transferase in human small intestine: Its activity and some properties of the enzymic reaction, J. Lipid Res. 22:271–277.

    PubMed  CAS  Google Scholar 

  • Herold, G., Schneider, A., Ditschuneit, H., and Stange, E. F., 1984, Cholesterol synthesis and esterification in cultured intestinal mucosa. Evidence for compartmentation, Biochim. Biophys. Acta 796:27–33.

    Article  PubMed  CAS  Google Scholar 

  • Ho, K-J., 1975, Effect of cholesterol feeding on circadian rhythm of hepatic and intestinal cholesterol biosynthesis in hamsters, Proc. Soc. Exp. Biol. Med. 150:271–277.

    PubMed  CAS  Google Scholar 

  • Howies, P. N., Carter, C. P., and Hui, D. Y., 1996, Dietary free and esterified cholesterol absorption in cholesterol esterase (bile salt-stimulated lipase) gene-targeted mice, J. Biol. Chem. 271:7196–7202.

    Article  Google Scholar 

  • Hua, X., Yokoyama, C., Wu, J., Briggs, M. R., Brown, M. S., Goldstein, J. L., and Wang, X., 1993, SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element, Proc. Natl. Acad. Sci. USA 90:11603–11607.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., and Hui, D. Y., 1990, Metabolic fate of pancreas-derived cholesterol esterase in intestine: An in vitro study using Caco-2 cells, J. Lipid Res. 31:2029–2037.

    PubMed  CAS  Google Scholar 

  • Hughes, T. E., Sasak, W. V., Ordovas, J. M., Forte, T. M., Lamon-Fava, S., and Schaefer, E. J., 1987, A novel cell line (Caco-2) for the study of intestinal lipoprotein synthesis, J. Biol. Chem. 262:3762–3767.

    PubMed  CAS  Google Scholar 

  • Kagami, A., Fidge, N., Suzuki, N., and Nestel, P., 1984, Characteristics of the binding of high-density lipoprotein, by intact cells and membrane preparations of rat intestinal mucosa, Biochim. Biophys. Acta 795:179–190.

    Article  PubMed  CAS  Google Scholar 

  • Kuksis, A., and Huang, T. C, 1962, Differential absorption of plant sterols in the dog, Can. J. Biochem. Physiol. 40:1493–1504.

    Article  CAS  Google Scholar 

  • Lange, Y., 1994, Cholesterol movement from plasma membrane to rough endoplasmic reticulum, J. Biol. Chem. 269:1–4.

    Google Scholar 

  • Lange, Y., Strebel, F., and Steck, T. L., 1993, Role of the plasma membrane in cholesterol esterification in rat hepatoma cells, 7. Biol. Chem. 268:13838–13843.

    PubMed  CAS  Google Scholar 

  • Li, A. C, Tanaka, R. D., Callaway, K., Fogelman, A. M., and Edwards, R A., 1988, Localization of 3-hydroxy-3-methylglutaryl CoA reductase and 3-hydroxy-3-methylglutaryl CoA synthase in the rat liver and intestine is affected by cholestyramine and mevinolin, J. Lipid Res. 29:781–796.

    PubMed  CAS  Google Scholar 

  • Lindsey, C. A., and Wilson, J. D., 1965, Evidence for a contribution by the intestinal wall to the serum cholesterol of the rat, J. Lipid Res. 6:173–181.

    PubMed  Google Scholar 

  • Liscum, L., and Dahl, N. K., 1992, Intracellular cholesterol transport, J. Lipid Res. 33:1239–1253.

    PubMed  CAS  Google Scholar 

  • Meiner, V., Tarn, C., Gunn, M. D., Dong, L-M., Weisgraber, K. H., Novak, S., Myers, H. M., Erickson, S. K., and Farese R. V., Jr., 1997, Tissue expression studies on the mouse acyl-CoA: cholesterol acyltransferase gene (Acact): Findings supporting the existence of multiple cholesterol esterification enzymes in mice, J. Lipid Res. 38:1928–1933.

    PubMed  CAS  Google Scholar 

  • Meiner, V. L., Cases, S., Myers, H. M., Sande, E. R., Bellosta, S., Schambelan, M., Pitas, R. E., McGuire, J., Herz, J., and Farese, R. V., Jr., 1996, Disruption of the acyl-CoA: cholesterol acyltransferase gene in mice: Evidence suggesting multiple cholesterol esterification enzymes in mammals, Proc. Natl. Acad. Sci. USA 93:14041–14046.

    Article  PubMed  CAS  Google Scholar 

  • Merchant, J. L., and Heller, R. A., 1977, 3-Hydroxy-3-methylglutaryl coenzyme A reductase in isolated villus and crypt cells of the rat ileum, J. Lipid Res. 18:722–732.

    PubMed  CAS  Google Scholar 

  • Muir, L. V., Born, E., Mathur, S. N., and Field, J. F., 1996, Lysophosphatidylcholine increases 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase gene expression in Caco-2 cells, Gastroenterol. 110:1068–1076.

    Article  CAS  Google Scholar 

  • Muroya, H., Sodhi, H. S., and Gold, R. G., 1977, Sterol synthesis in intestinal villi and crypt ceils of rats and guinea pigs, J. Lipid Res. 18:301–308.

    PubMed  CAS  Google Scholar 

  • Murthy, S., Albright, E., Mathur, S. N., and Field, F. J., 1988, Modification of Caco-2 cell membrane fatty acid composition by eicosapentaenoic acid and palmitic acid: Effect on cholesterol metabolism, J. Lipid Res. 29:773–780.

    PubMed  CAS  Google Scholar 

  • Nagy, L., and Freeman, D. A., 1990, Effect of cholesterol transport inhibitors on steroidogenesis and plasma membrane cholesterol transport in cultured MA-10 Leydig tumor cells, Endocrinology 126:2267–2276.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, M., Goldstein, J. L., and Brown, M. S., 1988, Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase, J. Biol. Chem. 263: 8929–8937.

    PubMed  CAS  Google Scholar 

  • Nordstrom, J. L., Rodwell, V. W., and Mitschelen, J. J., 1977, Interconversion of active and inactive forms of rat liver hydroxymethylglutaryl-CoA reductase,J. Biol. Chem. 252:8924–8934.

    PubMed  CAS  Google Scholar 

  • Norum, K. R, Lilljeqvist, A-C., and Drevon, C. A., 1977, Coenzyme-A-dependent esterification of cholesterol in intestinal mucosa from guinea-pig. Influence of diet on the enzyme activity, Scan. J. Gastroenterol. 12:281–288.

    Article  CAS  Google Scholar 

  • Oku, H., Ide, T., and Sugano, M., 1984, Reversible inactivation-reactivation of 3-hydroxy-3-methylglutaryl coenzyme A reductase of rat intestine, J. Lipid Res. 25:254–261.

    PubMed  CAS  Google Scholar 

  • Panini, S. R., Lehrer, G., Rogers, D. H., and Rudney, H., 1979, Distribution of 3-hydroxy-3-methylglutaryl coenzyme A reductase and alkaline phosphatase actitives in isolated ileal epithelial cells of fed, fasted, cholestyra-nine-fed, and4-aminopyrazolo [3,4-d] pyrimidine-treated rats, J. Lipid Res. 20:879–889.

    PubMed  CAS  Google Scholar 

  • Pape, M. E., Schultz, P. A., Rea, T. J., DeMattos, R. B., Kieft, K., Bisgaier, C. L., Newton, R. S., and Krause, B. R., 1995, Tissue specific changes in acyl-CoA: cholesterol acyltransferase (ACAT) mRNA levels in rabbits, J. Lipid Res. 36:823–838.

    PubMed  CAS  Google Scholar 

  • Purdy, B. H., and Field, F. J., 1984, Regulation of acylcoenzyme A: cholesterol acyltransferase and 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by lipoproteins in the intestine of parabiont rats, J. Clin. Invest. 74:351–357.

    Article  PubMed  CAS  Google Scholar 

  • Quaroni, A., and May, R. J., 1980, Establishment and characterization of intestinal epithelial cell cultures, Methods Cell. Biol. 21:403–427.

    Article  Google Scholar 

  • Quaroni, A., Wands, J. Trestad, R. L., and Isselbacher, K. J., 1979, Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria,J. Cell Biol. 80:248–265.

    Article  PubMed  CAS  Google Scholar 

  • Raul, F., Simon, P., Kendinger, M., and Haffen, K., 1977, Intestinal enzymes activities in isolated villus and crypt cells during post-natal development of the rat, Cell Tissue Res. 176:167–178.

    Article  PubMed  CAS  Google Scholar 

  • Rogler, G., Herold G., and Stange, E. F., 1991, HDL3-retroendocytosis in cultured small intestinal crypt cells: A novel mechanism of cholesterol efflux, Biochim. Biophys. Acta 1095:30–38.

    Article  PubMed  CAS  Google Scholar 

  • Salen, G., Ahrens, E. H., Jr., and Grundy, S. M., 1970, Metabolism of (β-sitosterol in man, J. Clin. Invest. 49:952–967.

    Article  PubMed  CAS  Google Scholar 

  • Shakir, K. M. M., Sundaram, S. G., and Margolis, S., 1978, Lipid synthesis in isolated intestinal cells, J. Lipid Res. 19:433–442.

    PubMed  CAS  Google Scholar 

  • Shefer, S., Hauser, S. Lapar V., and Mosbach E. H., 1973, Regulatory effects of dietary sterols and bile acids on rat intestinal HMG CoA reductase, J. Lipid Res. 14:400–405.

    PubMed  CAS  Google Scholar 

  • Shimano, H., Horton, J. D., Hammer, R. E., Shimomura, I., Brown, M. S., and Goldstein, J. L., 1996, Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-la, J. Clin. Invest. 98:1575–1584.

    Article  PubMed  CAS  Google Scholar 

  • Shimano, H., Shimomura, I., Hammer, R. E., Herz, J., Goldstein, J. L., Brown, M. S., and Horton, J. D., 1997, Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene, J. Clin. Invest. 100:2115–2124.

    Article  PubMed  CAS  Google Scholar 

  • Singer, I.I., Kawka, D. W., McNally, S. E., Scott, S., Alberts, A. W., Chen, J. S., and Huff, J. W., 1987, Hydroxy-methylglutaryl-coenzyme A reductase exhibits graded distribution in normal and mevionolin-treated ileum, Arteriosclerosis 7:144–151.

    Article  PubMed  CAS  Google Scholar 

  • Spady, D. K., and Dietschy, J. M., 1983, Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster, and rat, J. LipidRes. 24:303–315.

    CAS  Google Scholar 

  • Spady, D. K., Bilheimer, D. W., and Dietschy, J. M., 1983, Rates of receptor-dependent and independent low density lipoprotein uptake in the hamster, Proc. Natl. Acad. Sci. USA 80:3499–3503.

    Article  PubMed  CAS  Google Scholar 

  • Stange, E. F., and Dietschy, J. M., 1983a, Absolute rates of cholesterol synthesis in rat intestine in vitro and in vivo: A comparison of different substrates in slices and isolated cells, J. Lipid Res. 24:72–82.

    PubMed  CAS  Google Scholar 

  • Stange, E. F., and Dietschy, J. M., 1983b, Cholesterol synthesis and low density lipoprotein uptake are regulated independently in rat small intestinal epithelium, Proc. Natl. Acad. Sci. USA 80:5739–5743.

    Article  PubMed  CAS  Google Scholar 

  • Stange, E. F., Preclik, G., Schneider, A., Seiffer, E., and Ditschuneit, H., 1981a, Hormonal regulation of 3-hydoxy-3-methylglutaryl coenzyme A reductase and alkaline phosphatase in cultured intestinal mucosa, Biochim. Biophys. Acta 678:202–206.

    Article  PubMed  CAS  Google Scholar 

  • Stange, E.F., Alavi, M., Schneider, A., Ditschuneit, H., and Poley, J. R., 1981b, Influence of dietary cholesterol, saturated and unsaturated lipid on 3-hydroxy-3-methylglutaryl CoA reductase activity in rabbit intestine and liver, J. Lipid Res. 22:47–56.

    PubMed  CAS  Google Scholar 

  • Stange, E. F., Suckling, K. E., and Dietschy, J. M., 1983, Synthesis and coenzyme A-dependent esterification of cholesterol in rat intestinal epithelium, J. Biol. Chem. 258:12868–12875.

    PubMed  CAS  Google Scholar 

  • Suckling, K. E., and Stange, E. F., 1985, Role of acyl-CoA:cholesterol acyltransferase in cellular cholesterol metabolism, J. Lipid Res. 26:647–671.

    PubMed  CAS  Google Scholar 

  • Suckling, K. E., Stange, E. F., and Dietschy, J. M., 1983, Dual modulation of hepatic and intestinal acyl-CoA: cholesterol acyltransferase activity by (de-)phosphorylation and substrate supply in vitro, FEBS Let 151:111–116.

    Article  CAS  Google Scholar 

  • Suzuki, N., Fidge, N., Nestel, P., and Yin, J., 1983, Interaction of serum lipoproteins with the intestine. Evidence for specific high density lipoprotein-binding sites on isolated rat intestinal mucosal cells, J. Lipid Res. 24:253–264.

    PubMed  CAS  Google Scholar 

  • Sviridov, D. D., Safonova, I. G., Gusev, V. A., Talalaev, A. G., Tsibulsky, V. P., Ivanov, V. O., Preobrazensky, S. N., Repin, V. S., and Smirnov, V. N., 1986, Specific high affinity binding and degradation of high density lipoproteins by isolated epithelial cells of human small intestine, Metabolism 35:588–595.

    Article  PubMed  CAS  Google Scholar 

  • Sviridov, D. D., Ehnholm C., Tenkanen H., Pavlov, M-Yu., Safonova, I. G., and Repin, V. S., 1992, Studies on the proteins involved in the interaction of high-density lipoprotein with isolated human small intestine epithelial cells, FEBS Let 303:202–204.

    Article  CAS  Google Scholar 

  • Swann, A., Wiley, M. H., and Siperstein, M. D., 1975, Tissue distribution of cholesterol feedback control in the guinea pig,J. Lipid Res. 16:360–366.

    PubMed  CAS  Google Scholar 

  • Sylvin, C., and Borgström, B., 1969, Absorption and lymphatic transport of cholesterol and sitosterol in the rat, J. Lipid Res. 10:179–182.

    Google Scholar 

  • Sylvin, C., and Nordstrom, C., 1970, The site of absorption of cholesterol and sitosterol in the rat small intestine, Scand. J. Gastroenterol. 5:57–63.

    Google Scholar 

  • Tabas, L, Rosoff, W. J., and Boykow, G. C., 1988, Acylcoenzyme A: cholesterol acyltransferase in macrophages utilizes a cellular pool of cholesterol oxidase-accessible cholesterol as substrate, J. Biol. Chem. 263:1266–1272.

    PubMed  CAS  Google Scholar 

  • Turley, S. D., and Dietschy, J. M., 1988, The metabolism and excretion of cholesterol by the liver, in: The Liver: Biology and Pathobiology, 2nd ed. (I. M. Arias, W. B. Jakoby, H. Popper, D. Schachter, and D. A. Shafritz, eds.), Raven Press, New York, pp. 617–641.

    Google Scholar 

  • Uelmen, P. J., Oka, K., Sullivan, M., Chang, C. C. Y., Chang, T. Y., and Chan, L., 1995, Tissue-specific expression and cholesterol regulation of acylcoenzyme A:cholesterol acyltransferase (ACAT) in mice, J. Biol. Chem. 270:26192–26201.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Sato, R., Brown, M. S., Hua, X., and Goldstein, J. L., 1994, SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis, Cell 77:53–62.

    Article  PubMed  CAS  Google Scholar 

  • Weiser, M. M., 1973, Intestinal epithelial cell surface membrane glycoprotein synthesis, J. Biol. Chem. 248:2536– 2541.

    PubMed  CAS  Google Scholar 

  • Yokoyama, C., Wang, X., Briggs, M. R., Admon, A., Wu, J., Hua, X., Goldstein, J. L., and Brown, M. S., 1993, SREBP-1 , a basic helix-loop-helix-leucine zipper protein that controls transcription of the LDL receptor gene, Cell 75:187–197.

    PubMed  CAS  Google Scholar 

  • Zammit, V. A., and Caldwell A. M., 1992, Direct demonstration that increased phosphorylation of 3-hydroxy-3-methylglutaryl-CoA reductase does not increase its rate of degradation in isolated rat hepatocytes, Biochem. J. 284:901–904.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Field, F.J. (2001). Regulation of Intestinal Cholesterol Metabolism. In: Mansbach, C.M., Tso, P., Kuksis, A. (eds) Intestinal Lipid Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1195-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1195-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5435-2

  • Online ISBN: 978-1-4615-1195-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics