Skip to main content

Biophysics of Intestinal Luminal Lipids

  • Chapter
Intestinal Lipid Metabolism

Abstract

By definition, lipids are more soluble in apolar, organic fluids than in aqueous environments. This feature underlies the compartmentalization in cells and in organisms in different metabolic processes. Their apolar nature engenders specific demands to enable vectorial transport of lipids through aqueous environments. Interestingly, the mechanisms by which lipids are transported from one compartment in the organism (organ, cell, subcellular organelle) to another are diverse and depend on both the compartments involved and the lipid species. In this chapter the physiological transport moieties for lipids inside the intestinal lumen are discussed. The influx of lipids into the intestinal lumen is accounted for by the diet, by bile secretion, and by sloughing of cells from the intestinal mucosa. Quantitatively the most important lipid species entering the intestine is triacylglycerol, originating from the diet. Other species include phospholipids and cholesterol (diet, bile, cells), plant sterols (diet), lipid-soluble vitamins, and other trace lipids (steroids, PCBs, organic pollutants).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boffelli, D., Compassi, S., Werder, M., Weber, F. E., Phillips, M. C., Schulthess, G., and Hauser, H., 1997, The uptake of cholesterol at the small-intestinal brush border membrane is inhibited by apolipoproteins, FEBS Lett 411:7–11.

    Article  PubMed  CAS  Google Scholar 

  • Boffelli, D., Weber, F. E., Compassi, S., Werder, M., Schulthess, G., and Hauser, H., 1997, Reconstitution and further characterization of the cholesterol transport activity of the small-intestinal brush border membrane, Biochemistry 36:10784–10792.

    Article  PubMed  CAS  Google Scholar 

  • Borgström, B., 1977, The action of bile salts and other detergents on pancreatic lipase and the interaction with colipase, Biochim. Biophys. Acta 488:381–391.

    Article  PubMed  Google Scholar 

  • Borgström, B., 1980, Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat: In vitro experiments with the porcine enzymes, Gastroenterology 78:954–962.

    PubMed  Google Scholar 

  • Borgström, B., 1985, Fat Assimilation, in: Bockus Gastroenterology, (J. E. Berk, ed.), WB Saunders Company, Philadelphia, pp. 1510–1519.

    Google Scholar 

  • Borgström, B., and Erlanson, C., 1978a, Interactions of serum albumin and other proteins with porcine pancreatic lipase, Gastroenterology 75:382–386.

    Google Scholar 

  • Borgström, B., and Erlanson, C., 1978b, Lipase, colipase, amphipathic dietary proteins, and bile acids [letter], Gastroenterology 75:766.

    PubMed  Google Scholar 

  • Borgström, B., and Erlanson-Albertsson, C., 1982, Hydrolysis of milk fat globules by pancreatic lipase. Role of colipase, phospholipase A2, and bile salts, J. Clin. Invest. 70:30–32.

    Article  PubMed  Google Scholar 

  • Borgström, B., Dahlqvist, A., Lundh, G., and Sjovall, J., 1957, Studies on intestinal digestion and absorption in the human, J. Clin. Invest. 36:1521–1536.

    Article  PubMed  Google Scholar 

  • Borgström, B., Barrowman, J. A., and Lindstrom, M., 1985, Roles of bile acids in intestinal lipid digestion and absorption, in: Sterols and Bile Acids. (H. Danielsson and J. Sjovall, eds.), Elsevier Science Publishers BV, Amsterdam, pp. 405 -425.

    Google Scholar 

  • Carey, M. C, and Hernell, O., 1992, Digestion and absorption of fat, Semin. Gastroint. Dis. 3:189–208.

    Google Scholar 

  • Carey, M. C., and Lamont, J. T., 1992, Cholesterol gallstone formation. 1. Physical-chemistry of bile and biliary lipid secretion, Prog. Liver. Dis. 10:139–163.

    PubMed  CAS  Google Scholar 

  • Carey, M. C, and Small, D. M., 1970, The characteristics of mixed micellar solutions with particular reference to bile, Am. J. Med. 49:590–608.

    Article  PubMed  CAS  Google Scholar 

  • Carey, M. C., and Small, D. M., 1972, Micelle formation by bile salts. Physical-chemical and thermodynamic considerations, Arch. Intern. Med. 130:506–527.

    Article  PubMed  CAS  Google Scholar 

  • Carey, M. C, Small, D. M., and Bliss, C. M., 1983, Lipid digestion and absorption, Annu. Rev. Physiol. 45:651–677.

    Article  PubMed  CAS  Google Scholar 

  • Carriere, F., Verger, R., Lookene, A., and Olivecrona, G., 1995, Lipase structures at the interface between chemistry and biochemistry, Interface Between Chemistry and Biochemistry 73:3–26.

    Article  CAS  Google Scholar 

  • Cohen, D. E., and Carey, M. C, 1990, Physical chemistry of biliary lipids during bile formation, Hepatology 12:143S–147S.

    PubMed  CAS  Google Scholar 

  • Cohen, D. E., Angelico, M., and Carey, M. C, 1989, Quasielastic light scattering evidence for vesicular secretion of biliary lipids, Am. J. Physiol. 257:Gl–8.

    Google Scholar 

  • Cohen, D. E., Leighton, L. S., and Carey, M. C., 1992, Bile salt hydrophobicity controls vesicle secretion rates and transformations in native bile, Am. J. Physiol. 263:G386–395.

    PubMed  CAS  Google Scholar 

  • Compassi, S., Werder, M., Boffelli, D., Weber, F. E., Hauser, H., and Schulthess, G., 1995, Cholesteryl ester absorption by small intestinal brush border membrane is protein-mediated, Biochemistry 34:16473–16482.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, J. M., Mockel, G. M., Crawford, A. R., Hagen, S. J., Hatch, V. C, Barnes, S., Godleski, J. J., and Carey, M. C, 1995, Imaging biliary lipid secretion in the rat: Ultrastructural evidence for vesiculation of the hepatocyte canalicular membrane, J. Lipid. Res. 36:2147–2163.

    PubMed  CAS  Google Scholar 

  • Dahim, M., and Brockman, H., 1998, How colipase-fatty acid interactions mediate adsorption of pancreatic lipase to interfaces, Biochemistry 37:8369–8377.

    Article  PubMed  CAS  Google Scholar 

  • Donovan, J. M., and Carey, M. C, 1990, Separation and quantitation of cholesterol “carriers” in bile, Hepatology 12:94S–104S.

    PubMed  CAS  Google Scholar 

  • Donovan, J. M., Timofeyeva, N., and Carey, M. C, 1991, Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile, J. Lipid. Res. 32:1501–1512.

    PubMed  CAS  Google Scholar 

  • Fitscher, B. A., Elsing, C., Riedel, H. D., Gorski, J., and Stremmel, W., 1996, Protein-mediated facilitated uptake processes for fatty acids, bilirubin, and other amphipathic compounds, Proc. Soc. Exp. Biol. Med. 212:15–23.

    PubMed  CAS  Google Scholar 

  • Frazer, A. C., 1946, The absorption of triglyceride fat from the intestine, Physiol. Rev. 26:103–119.

    PubMed  CAS  Google Scholar 

  • Frazer, A. C., Schulman, J. H., and Stewart, H. C, 1964, Emulsification of fat in the intestine of the rat and and its relationship to absorption, J. Physiol. 103:306–316.

    Google Scholar 

  • Gargouri, Y., Pieroni, G., Riviere, C, Lowe, P. A., Sauniere, J. F., Sarda, L., and Verger, R., 1986a, Importance of human gastric lipase for intestinal lipolysis: An in vitro study, Biochim. Biophys. Acta 879:419–423.

    Article  PubMed  CAS  Google Scholar 

  • Gargouri, Y., Pieroni, G., Riviere, C., Sauniere, J. F., Lowe, P. A., Sarda, L., and Verger, R., 1986b, Kinetic assay of human gastric lipase on short- and long-chain triacylglycerol emulsions, Gastroenterology 91:919–925.

    PubMed  CAS  Google Scholar 

  • Gargouri, Y., Moreau, H., and Verger, R., 1989, Gastric Upases: Biochemical and physiological studies [published erratum appears in Biochim Biophys Acta 1990 Feb 23; 1042(3):421], Biochim. Biophys. Acta 1006:255–271.

    Article  PubMed  CAS  Google Scholar 

  • Gilat, T., and Somjen, G. J., 1996, Phospholipid vesicles and other cholesterol carriers in bile, Bba-Rev. Biomem-branes 1286:95–115.

    Article  Google Scholar 

  • Hernell, O., Staggers, J. E., and Carey, M. C., 1990, Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings, Biochemistry 29:2041–2056.

    Article  PubMed  CAS  Google Scholar 

  • Hjelm, R. P., Thiyagarajan, P., Schteingart, C. D., Hofmann, A. F., Alkan-Onyuksel, H., and Ton-Nu, H. T., 1995, Structure of mixed micelles present in bile and intestinal contents based on studies in model systems, in: Bile Acids in Gastroenterology. Basic and Clinical Advances. (A. F. Hofmann, G. Paumgartner, and A. Stiehl, eds.), Kluwer Academic Publishers, Dordrecht, pp. 41–58.

    Google Scholar 

  • Hofmann, A. F., 1976, Fat digestion: The interaction of lipid digestion products with micellar bile acid solutions, in: Lipid Absorption: Biochemical and Clinical Aspects (K. Rommel, H. Goebell, and R. Boehmer, eds.), MTP Press Ltd. Lancaster, England, pp. 3–22.

    Google Scholar 

  • Hofmann, A. F., 1990, Bile acid secretion, bile flow and biliary lipid secretion in humans, Hepatology 12:17S–22S.

    PubMed  CAS  Google Scholar 

  • Hofmann, A. F., and Borgström, B., 1964, The intraluminal phase of fat lipid digestion in man: The lipid content of the micellar and the oil phases of intestinal contents obtained during fat digestion and absorption, J. Clin. Invest. 43:241–251.

    Article  Google Scholar 

  • Hogben, C. A. M., Tocco, D. J., Brodie, B. B., and Schanker, L. S., 1959, On the mechanism of intestinal absorption of drugs, J. Pharmacol. Exp. Ther. 125:275–282.

    PubMed  CAS  Google Scholar 

  • Honkanen, R. E., Rigler, M. W., and Patton, J. S., 1985, Dietary fat assimilation and bile salt absorption in the killifish intestine, Am. J. Physiol. 249:G399–407.

    PubMed  CAS  Google Scholar 

  • Knoebel, L. K., 1972, Intestinal absorption in vivo of micellar and nonmicellar lipid, Am. J. Physiol. 223:255–261.

    PubMed  CAS  Google Scholar 

  • Lairon, D., Nalbone, G., Lafont, H., Leonardi, J., Vigne, J. L., Chabert, C., Hauton, J. C., and Verger, R., 1980, Effect of bile lipids on the adsorption and activity of pancreatic lipase on triacylglycerol emulsions, Biochim. Biophys. Acta 618:119–128.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, M. D., Kneip, J. M., and Levitt, D. G., 1988, Use of laminar flow and unstirred layer models to predict intestinal absorption in the rat, J. Clin. Invest. 81:1365–1369.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, M. D., Strocchi, A., and Levitt, D. G., 1992, Human jejunal unstirred layer: Evidence for extremely efficient luminal stirring, Am. J. Physiol. 262:G593–596.

    PubMed  CAS  Google Scholar 

  • Levitt, M. D., Furne, J. K., and Levitt, D. G., 1992, Shaking of the intact rat and intestinal angulation diminish the jejunal unstirred layer, Gastroenterology 103:1460–1466.

    PubMed  CAS  Google Scholar 

  • Lucas, M. L., Schneider, W., Haberich, F. J., and Blair, J. A., 1975, Direct measurement by pH-microelectrode of the pH microclimate in rat proximal jejunum, Proc. R. Soc. Lond. B. Biol. Sci. 192:39–48.

    Article  PubMed  CAS  Google Scholar 

  • Luk, A. S., Kaler, E. W., and Lee, S. P., 1997, Structural mechanisms of bile salt-induced growth of small unilamellar cholesterol-lecithin vesicles, Biochemistry 36:5633–5644.

    Article  PubMed  CAS  Google Scholar 

  • Mansbach, C. M.,II, Cohen, R. S., and Leff, P. B., 1975, Isolation and properties of the mixed lipid micelles present in intestinal content during fat digestion in man, J. Clin. Invest. 56:781–791.

    Article  PubMed  CAS  Google Scholar 

  • Mansbach, C. M.,II, Newton, D., and Stevens, R. D., 1980, Fat digestion in patients with bile acid malabsorption but minimal steatorrhea, Dig. Dis. Sci. 25:353–362.

    Article  PubMed  Google Scholar 

  • Mazer, N. A., and Carey, M. C, 1983, Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions, Biochemistry 22:426–442.

    Article  PubMed  CAS  Google Scholar 

  • Mazer, N. A., Benedek, G. B., and Carey, M. C, 1980, Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions, Biochemistry 19:601–615.

    Article  PubMed  CAS  Google Scholar 

  • Miller, K. W., and Small, D. M., 1982, The phase behavior of triolein, cholesterol, and lecithin emulsions, J. Coll. Interface. Sci. 89:466–478.

    Article  CAS  Google Scholar 

  • Minich, D. M., Kalivianakis, M., Havinga, R., Stellaard, F., Kuipers, P., Vonk, R. J., and Verkade, H. J., 1997, Absorption and metabolism of 13C-linoleic acid in rats with an intact or permanently interrupted enterohepatic circulation, Gastroenterology 112:A894(Abstract).

    Google Scholar 

  • Mockel, G. M., Gorti, S., Tandon, R. K., Tanaka, T., and Carey, M. C., 1995, Microscope laser light-scattering spectroscopy of vesicles within canaliculi of rat hepatocyte couplets, Amer. J. Physiol-Gastrointest. L. 32:G73–G84.

    Google Scholar 

  • Nishioka, T, Havinga, H., Tazuma, S., Stellaard, F., Kuipers, P., and Verkade, H. J., 2000, Enteral administration of phosphatidylcholine-cholesterol liposomes partially overcomes intestinal fat malabsorption in bile-deficient rats (abstract), Gastroenterology 118: A572.

    Google Scholar 

  • Nury, S., Pieroni, G., Riviere, C, Gargouri, Y., Bois, A., and Verger, R., 1987, Lipase kinetics at the triacylglycerol-water interface using surface tension measurements, Chem. Phys. Lipids 45:27–37.

    Article  PubMed  CAS  Google Scholar 

  • Patton, J. S., 1981, Gastrointestinal lipid digestion, in: Physiology of the Gastrointestinal Tract (L. R. Johnson, ed.), Raven Press, New York, pp. 1123–1146.

    Google Scholar 

  • Patton, J. S., and Carey, M. C, 1979, Watching fat digestion, Science 204:145–148.

    Article  PubMed  CAS  Google Scholar 

  • Porter, H. P., and Saunders, D. R., 1971, Isolation of the aqueous phase of human intestinal contents during the digestion of a fatty meal, Gastroenterology 60:997–1007.

    PubMed  CAS  Google Scholar 

  • Porter, H. P., Saunders, D. R., Tytgat, G., Brunser, O., and Rubin, C. E., 1971, Fat absorption in bile fistula man. A morphological and biochemical study, Gastroenterology 60:1008–1019.

    PubMed  CAS  Google Scholar 

  • Rigler, M. W., Honkanen, R. E., and Patton, J. S., 1986, Visualization by freeze fracture, in vitro and in vivo, of the products of fat digestion, J. Lipid Res. 27:836–857.

    PubMed  CAS  Google Scholar 

  • Saleeb, F. Z., Cante, C. J., Streckfus, T. K., Frost, J. R., and Rosano, H. L., 1975, Surface pH and stability of oilwater emulsions derived from laurate solutions, J. Am. Oil Chem. Soc. 52:208–212.

    Article  CAS  Google Scholar 

  • Sallee, V. L., 1974, Apparent monomer activity of saturated fatty acids im micellar bile salt solutions measured by a polyethylene partitioning system, J. LipidRes. 15:56–64.

    CAS  Google Scholar 

  • Schmit, G. D., Momsen, M. M., Owen, W. G., Naylor, S., Tomlinson, A., Wu, G., Stark, R. E., and Brockman, H. L., 1996, The affinities of procolipase and colipase for interfaces are regulated by lipids, Biophys. J. 71:3421–3429.

    Article  PubMed  CAS  Google Scholar 

  • Schoeller, C., Keelan, M., Mulvey, G., Stremmel, W., and Thomson, A. B. R., 1995, Role of a brush border membrane fatty acid binding protein in oleic acid uptake into rat and rabbit jejunal brush border membrane, Clin. Invest. Med. 18:380–388.

    PubMed  CAS  Google Scholar 

  • Schulthess, G., Compassi, S., Boffelli, D., Werder, M., Weber, F. E., and Hauser, H., 1996, A comparative study of sterol absorption in different small-intestinal brush border membrane models, J. Lipid Res. 37:2405–2419.

    PubMed  CAS  Google Scholar 

  • Shankland, W., 1970, The ionic behavior of fatty acids solublized by bile salts. J. Colloid Interface Sci. 34:9–25.

    Article  PubMed  CAS  Google Scholar 

  • Shiau, Y. F., 1981, Mechanisms of intestinal fat absorption, Am. J. Physiol 240:Gl–9.

    Google Scholar 

  • Shiau, Y. F., 1990, Mechanism of intestinal fatty acid uptake in the rat: The role of an acidic microclimate, J. Physiol. (Lond) 421:463–474.

    CAS  Google Scholar 

  • Shiau, Y. F., and Levine, G. M., 1980, pH dependence of micellar diffusion and dissociation, Am. J. Physiol. 239:G177–182.

    PubMed  CAS  Google Scholar 

  • Shiau, Y. F, Fernandez, P., Jackson, M. J., and McMonagle, S., 1985, Mechanisms maintaining a low-pH microclimate in the intestine, Am. J. Physiol. 248:G608–617.

    PubMed  CAS  Google Scholar 

  • Shiau, Y. E, Kelemen, R. J., and Reed, M. A., 1990, Acidic mucin layer facilitates micelle dissociation and fatty acid diffusion, Am. J. Physiol. 259:G671–675.

    PubMed  CAS  Google Scholar 

  • Small, D. M., 1970, Surface and bulk interactions of lipids and water with a classification of biologically active lipids based on these interactions, Fed. Proc. 29:1320–1326.

    PubMed  CAS  Google Scholar 

  • Somjen, G. J., and Gilat, T., 1983, A non-micellar mode of cholesterol transport in human bile, FEBS. Lett. 156:265–268.

    Article  PubMed  CAS  Google Scholar 

  • Staggers, J. E., Hernell, O., Stafford, R. J., and Carey, M. C, 1990, Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 1. Phase behavior and aggregation states of model lipid systems patterned after aqueous duodenal contents of healthy adult human beings, Biochemistry 29:2028–2040.

    Article  PubMed  CAS  Google Scholar 

  • Stremmel, W., and Hofmann, A. F., 1990, Intestinal absorption of unconjugated dihydroxy bile acids: Non-mediation by the carrier system involved in long chain fatty acid absorption, Lipids 25:11–16.

    Article  PubMed  CAS  Google Scholar 

  • Strocchi, A., Corazza, G., Furne, J., Fine, C, Di Sario, A., Gasbarrini, G., and Levitt, M. D., 1996, Measurements of the jejunal unstirred layer in normal subjects and patients with celiac disease, Am. J. Physiol. 270:G487–491.

    PubMed  CAS  Google Scholar 

  • Thomson, A. B., Keelan, M., Garg, M. L., and Clandinin, M. T., 1989, Intestinal aspects of lipid absorption: In review, Can. J. Physiol. Pharmacol. 67:179–191.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A. B., Schoeller, C, Keelan, M., Smith, L., and Clandinin, M. T., 1993, Lipid absorption: Passing through the unstirred layers, brush-border membrane, and beyond, Can. J. Physiol. Pharmacol. 71:531–555.

    Article  PubMed  CAS  Google Scholar 

  • Tso, P., and Simmonds, W. J., 1977, Importance of luminal lecithin in intestinal absorption and transport of lipid in the rat, Aust. J. Exp. Biol. Med. Sci. 55:355–357.

    Article  CAS  Google Scholar 

  • Verkade, H. J., Havinga, R., Kuipers, F., and Vonk, R. J., 1995, Mechanism of biliary lipid secretion, in: Bile Acids in Gastroenterology: Basic and Clinical Advances. (A. F. Hofmann, G. Paumgartner, and A. Stiehl, eds.), Kluwer Academic Publishers, Lancaster, pp. 230–246.

    Google Scholar 

  • Verkade, H. J., Vonk, R. J., and Kuipers, F., 1995, New insights into the mechanism of bile acid-induced biliary lipid secretion, Hepatology 21:1174–1189.

    PubMed  CAS  Google Scholar 

  • Westergaard, H., and Dietschy, J. M., 1974, Delineation of the dimensions and permeability characteristics of the two major diffusion barriers to passive mucosal uptake in the rabbit intestine, J. Clin. Invest 54:718–732.

    Article  PubMed  CAS  Google Scholar 

  • Westergaard, H., and Dietschy, J. M., 1976, The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cell, J. Clin. Invest. 58:97–108.

    Article  PubMed  CAS  Google Scholar 

  • Westergaard, H., Holtermuller, K. H., and Dietschy, J. M., 1986, Measurement of resistance of barriers to solute transport in vivo in rat jejunum, Am. J. Physiol. 250:G727–735.

    PubMed  CAS  Google Scholar 

  • Wilson, F. A., Sallee, V. L., and Dietschy, J. M., 1971, Unstirred water layer in intestine: Rate determinant of fatty acid absorption from micellar solutions, Science 174:1031–1033.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Verkade, H.J., Tso, P. (2001). Biophysics of Intestinal Luminal Lipids. In: Mansbach, C.M., Tso, P., Kuksis, A. (eds) Intestinal Lipid Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1195-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1195-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5435-2

  • Online ISBN: 978-1-4615-1195-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics