Skip to main content

Stable Carbon and Oxygen Isotopes in Soils

Applications for Archaeological Research

  • Chapter
Earth Sciences and Archaeology

Abstract

The most common use of stable carbon (C) and oxygen (O) isotopes in archaeology is to infer paleodiet, artifact provenance, and paleoenvironment (Herz, 1990; Herz and Garrison, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrose, S. H., and DeNiro, M. J., 1989, Climate and Habitat Reconstruction Using Stable Carbon and Nitrogen Isotope Ratios of Collagen in Prehistoric Herbivore Teeth from Kenya, Quaternary Research 31:407–422.

    Article  Google Scholar 

  • Ambrose, S. H., and Sikes, N. E., 1991, Soil Carbon Isotope Evidence for Holocene Habitat Change in the Kenya Rift Valley, Science 253:1402–1405.

    Article  Google Scholar 

  • Amundson, R. G., and Lund, L. J., 1987, The Stable Isotope Chemistry of a Native and Irrigated Typic Natrargid in the San Joaquin Valley of California, Soil Science Society of America Journal 51:761–767.

    Article  Google Scholar 

  • Amundson, R., Stern., L., Baisden, T., and Wang, Y., 1998, The Isotopic Composition of Soil and Soil-Respired CO2, Geoderma 82:83–114.

    Article  Google Scholar 

  • Amundson, R. G., Chadwick, O. A., Sowers, J. M., and Doner, H. E., 1988, The Relationship Between Modern Climate and Vegetation and the Stable Isotope Chemistry of Mojave Desert Soils, Quaternary Research 29:245–254.

    Article  Google Scholar 

  • Amundson, R. G., Chadwick, O. A., Sowers, J. M., and Doner, H. E., 1989, The Stable Isotope Chemistry of Pedogenic Carbonate at Kyle Canyon, Nevada, Soil Science Society of America Journal 53:201–210.

    Article  Google Scholar 

  • Balesdent, J., and Mariotti, A., 1996, Measurement of Soil Organic Matter Turnover Using 13C Abundance. In Mass Spectrometry of Soils, edited by T.W. Boutton and S. Yamasaki, pp. 83–112. Marcel Dekker, New York.

    Google Scholar 

  • Barrie, A., and Prosser, S. J., 1996, Automated Analysis of Light-Element Stable Isotopes by Isotope Ratio Mass Spectrometry. In Mass Spectrometry of Soils, edited by T. W. Boutton and S. Yamasaki, pp. 1–46. Marcel Dekker, New York.

    Google Scholar 

  • Bernoux, M., Cerri, C. C., Neill, C., and de Moraes, J. F. L., 1998, The Use of Stable Carbon Isotopes for Estimating Soil Organic Matter Turnover Rates, Geoderma 82:43–58.

    Article  Google Scholar 

  • Birkeland, P. W., 1984, Soils and Geomorphology, Oxford University Press, New York.

    Google Scholar 

  • Boutton, T. W., 1991b, Stable Carbon Isotope Ratios of Natural Materials (II). Atmospheric, Terrestrial, Marine, and Freshwater Environments. In Carbon Isotope Techniques, edited by D. C. Coleman and B. Fry, pp. 173–185. Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Boutton, T. W., 1991a, Stable Carbon Isotope Ratios of Natural Materials (I). Sample Preparation and Mass Spectrometric Analysis. In Carbon Isotope Techniques, edited by D. C. Coleman and B. Fry, pp. 155–171. Academic Press, San Diego, CA.

    Chapter  Google Scholar 

  • Boutton, T.W., 1996, Stable Carbon Isotope Ratios of Soil Organic Matter and their Use as Indicators of Vegetation and Climate Change. In Mass Spectrometry of Soils, edited by T. W. Boutton and S. Yamasaki, pp. 47–82. Marcel Dekker, New York.

    Google Scholar 

  • Boutton, T. W., Harrison, A. T., and Smith, B. N., 1980, Distribution of Biomass of Species Differing in Photosynthetic Pathway Along an Altitudinal Transect in Southeastern Wyoming Grassland, Oecologia 45:287–298.

    Article  Google Scholar 

  • Boutton, T. W., Archer, S. R., Midwood, A. J., Zitzer, S. F., and Bol, R., 1998, δ13C Values of Soil Organic Carbon and their Use in Documenting Vegetation Change in a Subtropical Savanna Ecosystem, Geoderma 82:5–42.

    Article  Google Scholar 

  • Buol, S. W., Hole, F. D., McCracken, R. J., and Southard, R. J., 1997, Soil Genesis and Classification, 4th ed. Iowa State University Press, Ames.

    Google Scholar 

  • Cerling, T. E., 1984, The Stable Isotopic Composition of Modern Soil Carbonate and its Relationship to Climate, Earth and Planetary Science Letters 71:229–240.

    Article  Google Scholar 

  • Cerling, T. E., 1992, Development of Grasslands and Savannas in East Africa during the Neogene, Palacogesgraphy, Palaeoclimatogogy, Palaeoecology 97:241–247.

    Article  Google Scholar 

  • Cerling, T. E., and Hay, R. L., 1986, An Isotopic Study of Paleosol Carbonate from Olduvai Gorge, Quaternary Research 25:63–78.

    Article  Google Scholar 

  • Cerling, T. E. and Quade, J., 1993, Stable Carbon and Oxygen Isotopes in Soil Carbonates. In Climate Change in Continental Isotopic Records, edited by P. K. Swart, K. C. Lohmann, J. McKenzie, and S. Sarin, pp. 217–232, Geophysical Monograph 78. American Geophysical Union, Washington, DC.

    Chapter  Google Scholar 

  • Cerling, T. E., Quade, J., Wang, Y., and Bowman, J. R., 1989, Carbon Isotopes in Soils and Palaeosols as Ecology and Palaeoecology Indicators, Nature 341:138–139.

    Article  Google Scholar 

  • Cerling, T. E., Quade, J., Ambrose, S. H., and Sikes, N., 1991a, Fossil Soils, Grasses, and Carbon Isotopes from Fort Ternan: Grassland or Woodland? Journal of Human Evolution 21:295–306.

    Article  Google Scholar 

  • Cerling, T. E., Solomon, D. K., Quade, J., and Bowman, J. R., 1991b, On the Isotopic Composition of Carbon in Soil Carbon Dioxide, Geochimica Cosmochimica et Acta 55:3403–3405.

    Article  Google Scholar 

  • Cerling, T. E., Wang, Y., and Quade, J., 1993, Expansion of C4 Ecosystems as an Indicator of Global Ecological Change in the Late Miocene, Nature 361:344–345.

    Article  Google Scholar 

  • Cole, D. R., and Monger, H. C., 1994, Influence of Atmospheric CO2 on the Decline of C4 Plants During the Last Deglaciation, Nature 368:533–536.

    Article  Google Scholar 

  • Craig, H., 1957, Isotopic Standards for Carbon and Oxygen and Correction Factors for Mass Spectrometric Analysis of Carbon Dioxide, Geochimica Gosmochimica et Acta 12:133–149.

    Article  Google Scholar 

  • Craig, H., and Craig, V., 1972, Greek Marbles: Determination of Provenance by Isotopic Analysis, Science 176:401–403.

    Article  Google Scholar 

  • Dansgaard, W., 1964, Stable Isotopes in Precipitation, Tellus 16:436–468.

    Article  Google Scholar 

  • Deines, P., 1980, The Isotopic Composition of Reduced Organic Carbon. In Handbook of Environmental Geochemistry (1) The Terrestrial Environment, edited by P. Fritz and J. C. Fontes, pp. 329–406. Elsevier, Amsterdam.

    Google Scholar 

  • Dorr, H., and Munnich, K., 1980, Carbon-14 and C-13 in soil CO2, Radiocarbon 22:909–918.

    Google Scholar 

  • Dzurec, R. S., Boutton, T. W., Caldwell, M. M., and Smith, B. N., 1985, Carbon Isotope Ratios of Soil Organic Matter and Their Use in Assessing Community Composition Changes in Carlew Valley, Utah, Oecologia 66:17–24.

    Article  Google Scholar 

  • Ferring, C. R., 1990, Archaeological Geology of the Southern Plains. In Archaeological Geology of North America, edited by N. P. Lasca and J. Donahue, pp. 253–266. Geological Society of America, Centennial Special Volume 4, Boulder, CO.

    Google Scholar 

  • Ferring, C. R., 1995, Middle Holocene Environments, Geology, and Archaeology in the Southern Plains. In Archaeological Geology of the Archaic Period in North America, edited by E. A. Bettis, pp. 21–36. Geological Society of America Special Paper No. 297, Boulder, CO

    Google Scholar 

  • Fredlund, G. G., and Tieszen, L. L., 1997, Phytolith and Carbon Isotope Evidence for Late Quaternary Vegetation and Climate Change in the Southern Black Hills, South Dakota, Quaternary Research 47: 206–217.

    Article  Google Scholar 

  • Hard, R. J., Mauldin, R. P., and Raymond, G. R., 1996, Mano Size, Stable Carbon Isotope Ratios, and Macrobotanical Remains as Multiple Lines of Evidence of Maize Dependence in the American Southwest, Journal of Archaeological Method and Theory 3:253–318.

    Article  Google Scholar 

  • Hays, P. D., and Grossman, E. L., 1991, Oxygen Isotopes in Meteoric Calcite Cements as Indicators of Continental Paleoclimate, Geology 19:441–444.

    Article  Google Scholar 

  • Herz, N., 1990, Stable Isotope Geochemistry Applied to Archaeology. In Archaeological Geology of North America, edited by N. P. Lasca and J. Donahue, pp. 585–596. Geological Society of America Centennial Special Volume 4, Boulder, CO.

    Google Scholar 

  • Herz, N., and Dean, N. E., 1986, Stable Isotopes and Archaeological Geology, the Carrara Marble, Northern Italy, Applied Geochemistry 1:139–151.

    Article  Google Scholar 

  • Herz, N., and Garrison, E. G., 1998, Geological Methods for Archaeology, Oxford University Press, New York.

    Google Scholar 

  • Hesterberg, R., and Siegenthaler, U., 1991, Production and Stable Isotopic Composition of CO2 in a Soil Near Bern, Switzerland, Tellus 43B:197–205.

    Google Scholar 

  • Hoefs, J., 1987, Stable Isotope Geochemistry, 3rd ed. Springer-Verlag, New York.

    Google Scholar 

  • Holliday, V. T., 1989, Middle Holocene Drought on the Southern High Plains, Quaternary Research 31:74–82.

    Article  Google Scholar 

  • Holliday, V. T., 1995, Stratigraphy and Paleoenvironments of Late Quaternary Valley Fills on the Southern High Plains, Geological Society of America Memoir 186, Boulder, CO.

    Google Scholar 

  • Humphrey, J. D. and Ferring, C. R., 1994, Stable Isotopic Evidence for Latest Pleistocene and Holocene Climatic Change in North-Central Texas,Quaternary Research 41:200–213.

    Article  Google Scholar 

  • Jenny, H., 1941, Factors of Soil Formation. McGraw-Hill, New York.

    Google Scholar 

  • Kappelman, J., 1991, The Paleoenvironments of Kenyapithecus at Fort Ternan, Journal of Human Evolution 20:95–129.

    Article  Google Scholar 

  • Kelly, E. F., Amundson, R. G., Marino, B. D., and DeNiro, M. J., 1991a, Stable Carbon Isotopic Composition of Carbonate in Holocene Grassland Soils, Soil Science Society of America Journal 55:1651–1658.

    Article  Google Scholar 

  • Kelly, E. F., Amundson, R. G., Marino, B. D., and DeNiro, M. J., 1991b, The Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climatic change, Quaternary Research 35:222–233.

    Article  Google Scholar 

  • Kelly, E. F., Yonker, C., and Marino, B., 1993, Stable Carbon Isotope Composition of Paleosols: Application to Holocene. In Climate Change in Continental Isotopic Records, edited by P.K. Swart,K.C. Lohmann, J. McKenzie, and S. Savin, pp. 233–239. Geophysical Monograph 78, American Geophysical Union, Washington, DC.

    Chapter  Google Scholar 

  • Kingston, J. D., Marino, B. D., and Hill, A., 1994, Isotopic evidence for Neogene Hominid Paleoen-vironments in the Kenya Rift Valley, Science 264:955–959.

    Article  Google Scholar 

  • Lowe, J. J., and Walker, M. J. C., 1984, Reconstructing Quaternary Environments, Longman, New York.

    Google Scholar 

  • Marino, B. D., McElroy, M. B., Salawitch, R. J., and Spaulding, W. G, 1992, Glacial-to-Interglacial Variations in the Carbon Isotopic Composition of Atmospheric CO2, Nature 357:461–466.

    Article  Google Scholar 

  • Marion, G. M., Introne, D. S., and Van Cleve, K., 1991, The Stable Isotope Geochemistry of CaCO3 on the Tanana River Floodplain of Interior Alaska, U.S.A.: Composition and Mechanisms of Formation, Chemical Geology 86:97–110.

    Google Scholar 

  • Melillo, J. M., Aber, J. D., Linkins, A. E., Ricca, A., Fry, B., and Nadelhoffer, K. F., 1989, Carbon and Nitrogen Dynamics Along a Decay Continuum: Plant Litter to Soil Organic Matter. In Ecology of Arable Land: Perspectives and Challenges, edited by M. Clarholm and L. M. Bergstrom, pp. 53–62. Kluwer Academic, Dordrecht, Netherlands.

    Chapter  Google Scholar 

  • Midwood, A. J., and Boutton, T. W., 1998, Soil Carbonate Decomposition by Acid has Little Effect on δ13C of Organic Matter, Soil Biology and Biochemistry 30:1301–1307.

    Article  Google Scholar 

  • Monger, H. C., 1995, Pedology in Arid Lands Archaeological Research: An Example from Southern New Mexico-Western Texas. In Pedological Perspectives in Archaeological Research, edited by M.E. Collins, B. J. Carter, B. G. Gladfelter, and R. J. Southard, pp. 35–50. Soil Science Society of America Special Publication Number 44, Madison, WI.

    Google Scholar 

  • Nadelhoffer, K. F., and Fry, B., 1988, Controls on Natural Nitrogen-15 and Carbon-13 Abundances in Forest Soil Organic Matter, Soil Science Society of America Journal 52:1633–1640.

    Article  Google Scholar 

  • Nordt, L. C., 1992, Archaeological Geology of the Fort Hood Military Reservation, Fort Hood, Texas. U.S. Army Fort Hood, Archaeological Resource Management Series, Research Report 25. Texas A&M University, College Station.

    Google Scholar 

  • Nordt, L. C. 1998, Geoarchaeology of the Rio Grande and Elm Creek in the Vicinity of Site 41MV120. In 41MV20: A Stratified Late Archaic Site in Maverick, County, Texas, edited by B. J. Vierra, pp. 43–77. Archaeological Survey Report No. 251, Center for Archaeological Research, The University of Texas at San Antonio.

    Google Scholar 

  • Nordt, L. C., Boutton, T. W., Hallmark, C. T., and Waters, M. R., 1994, Late Quaternary Vegetation and Climate Changes in Central Texas Based on the Isotopic Composition of Organic Carbon, Quaternary Research 41:109–120.

    Article  Google Scholar 

  • Nordt, L. C., Wilding, L. P., Hallmark, C. T., and Jacob, J. S., 1996, Stable Carbon Isotope Composition of Pedogenic Carbonate and their Use in Studying Pedogenesis. In Mass Spectrometry of Soils, edited by T. W. Boutton and S. Yamasaki, pp. 133–154. Marcel Dekker, New York.

    Google Scholar 

  • Nordt, L. C., Hallmark, T. C., Wilding, L. P., and Boutton, T. W., 1998, Quantifying Pedogenic Carbonate Accumulations Using Stable Carbon Isotopes, Geoderma 82:115–136.

    Article  Google Scholar 

  • Pendall, E., and Amundson, R., 1990, The Stable Isotope Chemistry of Pedogenic Carbonate in an Alluvial Soil from the Punjab, Pakistan, Soil Science 149:199–211.

    Article  Google Scholar 

  • Pendall, E. G., Harden, J. W., Trumbore, S. E., and Chadwick, O. A., 1994, Isotopic Approach to Soil Carbonate Dynamics and Implications for Paleoclimatic Interpretations, Quaternary Research 42:61–70.

    Article  Google Scholar 

  • Penuelas, J., and Azcon-Bieto, J., 1992, Changes in Leaf δ13C of Herbarium Plant Specimens During the Past 3 Centuries of CO2 Increase, Plant Cell Environments 15:485–489.

    Article  Google Scholar 

  • Quade, J., Ceding, T. E., and Bowman, J. R., 1989, Systematic Variations in the Carbon and Oxygen Isotopic Composition of Pedogenic Carbonate along Elevation Transects in the Southern Great Basin, United States, Geological Society of America Bulletin 101:464–475.

    Article  Google Scholar 

  • Retallack, G. J., Dugas, K. P., and Bestland, E. A., 1990, Fossil Soils and Grasses of a Middle Miocene East African Grassland, Science 247:1325–1328.

    Article  Google Scholar 

  • Rozinski, K., Araquas-Araguas, L., and Gonfiantini, R.,1993, Isotopic Patterns in Modern Global Precipitation. In Climate Change in Continental Isotopic Records, edited by P.K. Swart, K. C. Lohmann, J. McKenzie, and S. Savin, pp. 1–36. Geophysical Monograph 78, American Geophysical Union, Washington, DC.

    Chapter  Google Scholar 

  • Shackleton, N. J., 1973, Oxygen Isotope Analysis as a Means of Determining Season of Occupation of Prehistoric Midden Sites, Archaeometry 15:133–157.

    Article  Google Scholar 

  • Sharpenseel, H., and Neue, H., 1984, Use of Isotopes in Studying the Dynamics of Organic Matter in Soils. In Organic Matter and Rice, pp. 273–310. International Rice Research Institute, Manila, the Philippines,

    Google Scholar 

  • Smith, B. N., and Epstein, S., 1971, Two Categories of 13C/12C ratios for Higher Plants, Plant Physiology 47:380–384.

    Article  Google Scholar 

  • Teeri, J. A., and Stowe, L. G., 1976, Climatic Patterns and the Distribution of C4 Grasses in North America, Oecologia 23:1–12.

    Google Scholar 

  • Tieszen, L. L., Senyimba, M., Imbamba, S., and Troughton, J., 1979, The Distribution of C3 and C4 Grasses and Carbon Isotope Discrimination along an Altitudinal and Moisture Gradient in Kenya, Oecologia 37:337–350.

    Google Scholar 

  • Trumbore, S. E., 1996, Applications of Accelerator Mass Spectrometry to Soil Science. In Mass Spectrometry of Soils, edited by T. W. Boutton and S. Yamasaki, pp. 311–340. Marcel Dekker, New York.

    Google Scholar 

  • van der Merwe, N. J., 1982, Carbon Isotopes, Photosynthesis, and Archaeology, American Scientist 70:595–606.

    Google Scholar 

  • van der Merwe, N. J., and Vogel, J., 1977, Isotopic Evidence for Early Maize Cultivation in New York State, American Antiquity 42:238–242.

    Article  Google Scholar 

  • Vepraskas, M. J., 1994, Redoximorphic Features for Identifying Aquic Conditions. North Carolina Agricultural Research Service, North Carolina State University, Technical Bulletin 301. Raleigh, NC.

    Google Scholar 

  • Wang, Y., Amundson, R., and Trumbore, S., 1996a, Radiocarbon Dating of Soil Organic Matter. Quaternary Research 45:282–288.

    Article  Google Scholar 

  • Wang, Y., Cerling, T. E., and Effland, W. R., 1996b, Stable Isotope Ratios of Soil Carbonate and Soil Organic Matter as Indicators of Forest Invasion of Prairie Near Ames, Iowa, Oecologia 95:365–369.

    Article  Google Scholar 

  • Wang, H., Ambrose, S. H., Liu, C. L. J., and Follmer, L. R., 1997, Paleosol Stable Isotope Evidence for Early Hominid Occupation of East Asian Temperate Environments, Quaternary Research 48:228–238.

    Article  Google Scholar 

  • West, L. T., Drees, L. R., Wilding, L. P., and Rabenhorst, M. C., 1988, Differentiation of Pedogenic and Lithogenic Carbonate Forms in Texas, Geoderma 43:271–287.

    Article  Google Scholar 

  • Wilding, L. P., West, L. T., and Drees, L. R., 1990, Field and Laboratory Identification of Calcic and Petrocalcic Horizons. In Proceedings of the Fourth International Soil Correlation Meeting (ISCOM IV) Characterization, Classification, and Utilization of Aridisols. Part A: Papers, edited by J. M. Kimble and W. D. Nettleton, pp. 79–92. U.S. Department of Agriculture, Soil Conservation Service, Lincoln, NE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nordt, L.C. (2001). Stable Carbon and Oxygen Isotopes in Soils. In: Goldberg, P., Holliday, V.T., Ferring, C.R. (eds) Earth Sciences and Archaeology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1183-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1183-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5433-8

  • Online ISBN: 978-1-4615-1183-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics