Skip to main content
  • 2848 Accesses

Abstract

So the fundamental dilemma of pulse measurement is resolved. We’ve learned to avoid one-dimensional phase retrieval and embrace its two-dimensional cousin, and people have been busy taking advantage of the solution. FROG has allowed measurements undreamt of a mere ten years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taft, G., et al., Ultrashort Optical Waveform Measurements Using Frequency-Resolved Optical Gating. Optics Letters, 1995. 20(7): p. 743–5.

    Article  ADS  Google Scholar 

  2. Baltuska, A., M.S. Pshenichnikov, and D. Wiersma, Amplitude and Phase Characterization of4.5fs Pulses by Frequency-Resolved Optical Gating. Opt. Lett., 1998. 23(18): p. 1474–6.

    Article  ADS  Google Scholar 

  3. Bonlie, J.D., et al., Production of>10/sup 21/W/cm/sup 2/from a large-aperture Ti.sapphire laser. Applied Physics B, 2000. B70(suppl.issue): p. S155–60.

    Article  Google Scholar 

  4. Hong, K.H., et al., Temporal characterization of a femtosecond terawatt Ti.sapphire laser using frequency-resolved optical gating. Journal of the Korean Physical Society, 1998. 33(3): p. 315–19.

    Google Scholar 

  5. Cheng, Z., et al., Amplitude and Chirp Characterization of High-Power Laser Pulses in the 5-fs Regime. Opt. Lett., 1999. 24(4): p. 247–9.

    Article  ADS  Google Scholar 

  6. Shirakawa, A., et al. Visible sub-5-fs Pulse Generation by Pulse-Front-Matched Optical Parametric Amplification. In Conference on Lasers and Electro-Optics. 1999. Baltimore: Optical Society of America.

    Google Scholar 

  7. Cerullo, G., et al., Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible. Opt. Lett., 1998. 23(16): p. 1283.

    Article  ADS  Google Scholar 

  8. Wilhelm, T., J. Piel, and E. Riedle, Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. Opt. Lett., 1997. 22(19): p. 1494–6.

    Article  ADS  Google Scholar 

  9. Baumert, T. and G. Gerber, Molecules in Intense Femtosecond Laser Fields. Physica Scripta, 1996. T72.

    Google Scholar 

  10. Bartels, R., et al., Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature, 2000. 406(6792): p. 164–6.

    Article  ADS  Google Scholar 

  11. Bartels, R., et al., Attosecond time-scale feedback control of coherent X-ray generation. Chemical Physics, 2001. 267(1-3): p. 277–89.

    Article  ADS  Google Scholar 

  12. Feurer, T., et al., Control of the photodissociation process ofCsCl using a feedback-controlled self-learning fs-laser system. Chemical Physics, 2001. 267(1–3): p. 223–9.

    Article  ADS  Google Scholar 

  13. Homung, T., et al., Coherent control of the molecular four-wave-mixing response by phase and amplitude shaped pulses. Chemical Physics, 2001. 267(1–3): p. 261–76.

    ADS  Google Scholar 

  14. Tesch, C, K. Kompa, and R. de Vivie-Riedle, Design of optical infrared femtosecond laser pulses for the overtone excitation in acetylene. Chemical Physics, 2001. 267(1–3): p. 173–185.

    Article  ADS  Google Scholar 

  15. Kleiman, V.D., et al., Controlling condensed-phase vibrational excitation with tailored infrared pulses. Chemical Physics, 1998. 233(2–3): p. 207–16.

    Article  ADS  Google Scholar 

  16. Diddams, S.A., et al., Characterizing the nonlinear propagation of femtosecond pulses in bulk media. IEEE Journal of Selected Topics in Quantum Electronics, 1998. 4(2): p. 306–16.

    Article  Google Scholar 

  17. Eaton, H.K., et al., Investigating Nonlinear Femtosecond Pulse Propagation with Frequency-Resolved Opitcal Gating. IEEE J. Quant. Electron., 1999. 35(4): p. 451–8.

    Article  ADS  Google Scholar 

  18. Taylor, A.J., G. Rodriguez, and T.S. Clement, Determination of ni by Direct Measurement of the Optical Phase. Opt. Lett., 1996. 21(22): p. 1812–14.

    Article  ADS  Google Scholar 

  19. Barry, L.P., et al., Complete characterisation of pulse propagation in optical fibres using frequency-resolved optical gating. Electronics Letters, 1996. 32(25): p. 2339–40.

    Article  Google Scholar 

  20. Bollond, P.G., et al., Characterization of nonlinear switching in a figure-of-eight fiber laser using frequency-resolved optical gating. IEEE Photonics Technology Letters, 1998.10(3): p. 343–5.

    Article  ADS  Google Scholar 

  21. Yabushita, A., T. Fuji, and T. Kobayashi, SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium. Optics Communications, 2001.198(1–3): p. 227–32.

    Article  ADS  Google Scholar 

  22. Nikitin, S.P., et al., Guiding of Intense Femtosecond Pulses in Preformed Plasma Channels. Opt. Lett., 1997. 22(23): p. 1787–9.

    Article  ADS  Google Scholar 

  23. Nikitin, S.P., et al., lonization-induced pulse shortening and retardation of high intensity femtosecond laser pulses. Optics Communications, 1998.157(1-6): p. 139–44.

    Article  ADS  Google Scholar 

  24. Young, PE. and PR. Bolton, Propagation ofsubpicosecond laser pulses through a fully ionized plasma. Physical Review Letters, 1996. 77(22): p. 4556–9.

    Article  ADS  Google Scholar 

  25. Bolton, PR., et al., Propagation of intense, ultrashort laser pulses through metal vapor: refraction-limited behavior for single pulses. Journal of the Optical Society of America B (Optical Physics), 1996.13(2): p. 336–46.

    Article  ADS  Google Scholar 

  26. Kohler, B., et al., Phase and Intensity Characterization of Femtosecond Pulses from a Chirped-Pulse Amplifier by Frequency-Resolved Optical Gating. Optics Letters, 1994. 20(5): p. 483–5.

    Article  MathSciNet  ADS  Google Scholar 

  27. Kasper, A. and K.J. Witte, Contrast and phase of ultrashort laser pulses from Ti: sapphire ring and Fabry-Perot resonators based on chirped mirrors. Journal of the Optical Society of America B, 1998. 15(9): p. 2490–5.

    Article  ADS  Google Scholar 

  28. Weigand, R., M. Wittmannp, and J.M. Guerra, Generation of femtosecond pulses by two-photon pumping supercontinuum-seeded collinear traveling wave amplification in a dye solution. Applied Physics B, 2001. B73(3): p. 201–3.

    Article  Google Scholar 

  29. Reid, D.T., et al., Amplitude and phase measurement of mid-infrared femtosecond pulses by using cross-correlation frequency-resolved optical gating. Optics Letters, 2000. 25(19): p. 1478–80.

    Article  ADS  Google Scholar 

  30. Efimov, E., et al., Minimization of dispersion in an ultrafast chirped pulse amplifier using adaptive learning. Applied Physics B, 2000. 70(Suppl.): p. S133–44.

    Article  Google Scholar 

  31. Gardecki, J.A., et al., Optical heterodyne detected spectrograms of ultrafast nonresonant electronic. Journal of the Optical Society of America B, 2000.17(4): p. 652–62.

    Article  ADS  Google Scholar 

  32. Yeremenko, S., et al., Frequency-resolved pump-probe characterization of femtosecond IR pulses. Opt. Lett., 2002.

    Google Scholar 

  33. Ogawa, K. and M.D. Pelusi, High-sensitivity pulse spectrogram measurement using two-photon absorption in a semiconductor at 1.5- mu m wavelength. Optics Express, 2000. 7(3).

    Google Scholar 

  34. Taira, K. and K. Kikuchi, Highly sensitive frequency-resolved optical gating in 1.55 mu m region using organic nonlinear optical crystal for second-harmonic generation. Electronics Letters, 2000. 36(20): p. 1719–20.

    Article  Google Scholar 

  35. Stimson, M.J., et al., Noisy-light correlation functions by frequency resolved optical gating. Journal of the Optical Society of America B (Optical Physics), 1998.15(2): p. 505–14.

    Article  ADS  Google Scholar 

  36. Branning, D., A.L. Migdall, and A.V. Sergienko, Simultaneous measurement of group and phase delay between two photons. Physical Review A, 2000. 62(6): p. 063808/1–12.

    Article  ADS  Google Scholar 

  37. Christov, LP, M.M. Murnane, and H.C. Kapteyn, High-Harmonic Generation of Attosecond Pulses in the “Single-Cycle”Regime. Physical Review Letters, 1997. 78(7): p. 1251.

    Article  ADS  Google Scholar 

  38. Christov, I.P, M.M. Murnane, and H.C. Kapteyn, Attosecond Pulse Generation in the Single Cycle Regime. Physical Review Letters, 1997. 78: p. 1251.

    Article  ADS  Google Scholar 

  39. Christov, I.P, M.M. Murnane, and H.C. Kapteyn, Generation and Propagation of Attosecond X-Ray Pulses in Gaseous Media. Physical Review A Rapid Communications, 1998. 57: p. R2285.

    ADS  Google Scholar 

  40. Christov, LP, H.C. Kapteyn, and M.M. Murnane, Quasi-phase matching of high-harmonics and attosecond pulses in modulated. Optics Express, 2000. 7(11).

    Google Scholar 

  41. Christov, LP, Control of high harmonic and attosecond pulse generation in aperiodic modulated waveguides. Journal of the Optical Society of America B, 2001.18(12): p. 1877–81.

    Article  ADS  Google Scholar 

  42. Christov, LP, et al., Attosecond time-scale intra-atomic phase matching of high harmonic generation. Physical Review Letters, 2001. 86(24): p. 5458–61.

    Article  ADS  Google Scholar 

  43. Geissler, M., A. Scrinzi, and T. Brabec, Attosecond cross-correlation technique. Physical Review Letters, 2001. 86(3): p. 412–5.

    Article  ADS  Google Scholar 

  44. Lappas, D.G. and A. L’Huillier, Generation of attosecond xuv pulses in strong laser-atom interactions. Physical Review A, 1998. 58(5): p. 4140–6.

    Article  ADS  Google Scholar 

  45. Milosevic, D.B., et al., High-harmonic generation by a bichromatic bicircular laser field. Laser Physics, 2001.11(2): p. 165–8.

    Google Scholar 

  46. Paul, P.M., et al., Observation of a train of attosecond pulses from high-order harmonic generation. Science, 2001. 292(5522): p. 1689–92.

    Article  ADS  Google Scholar 

  47. Roos, L., M.B. Gaarde, and A. L’Huillier, Tailoring harmonic radiation to different applications using a genetic algorithm. Journal of Physics B, 2001. 34(24): p. 5041–54.

    Article  ADS  Google Scholar 

  48. Saari, P., Evolution of subcycle pulses in nonparaxial Gaussian beams. Optics Express, 2001. 8(11).

    Google Scholar 

  49. Scrinzi, A., M. Geissler, and T. Brabec, Attosecond cross correlation technique. Physical Review Letters, 2001. 86(3): p. 412–15.

    Article  ADS  Google Scholar 

  50. Scrinzi, A., M. Geissler, and T. Brabec, Techniques for attosecond pulse detection and the observation of electronic quantum motion. Laser Physics, 2001.11(2): p. 169–73.

    Google Scholar 

  51. Telle, H.R., et al., Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Applied Physics B, 1999. B69(4): p. 327–32.

    Article  MathSciNet  Google Scholar 

  52. Tempea, G., et al., Comment on “Observation of attosecond light localization in higher order harmonic generation” [and reply]. Physical Review Letters, 2001. 87(10): p. 109401/1–2/2.

    Article  ADS  Google Scholar 

  53. Hentschel, M., et al., Attosecond Metrology. Nature, 2001. 414: p. 509–13.

    Article  ADS  Google Scholar 

  54. Baltuska, A., M.S. Pshenichnikov, and D.A. Wiersma, Second-Harmonic Generation Frequency-Resolved Optical Gating in the Single-Cycle Regime. IEEE J. Quant. Electron., 1999. 35(4): p. 459–78.

    Article  ADS  Google Scholar 

  55. Spielmann, C. and a.e. al, Generation of Coherent X-ray Pulses in the Water Window using 5fs Laser Pulses, in Science. 1997. p. 661.

    Google Scholar 

  56. Chang, Z., et al., Generation of Coherent Soft-X-Rays at 2.7nm using High Harmonics. Physical Review Letters, 1997. 79: p. 2967.

    Article  ADS  Google Scholar 

  57. Krausz, F., et al., Extreme Nonlinear Optics: Exposing Matter to a Few Periods of Light. Opt. Phot. News, 1998. 9(7): p. 46.

    Article  ADS  Google Scholar 

  58. Bohan, A.D., et al., Phase-Dependent Harmonic Emission with Ultrashort Laser Pulses. Phys. Rev. Lett., 1998. 81(9): p. 1837.

    Article  ADS  Google Scholar 

  59. Tempea, G., M. Geissler, and T. Brabec, Phase sensitivity of high-order harmonic generation with few-cycle laser pulses. J. Opt. Soc. Am. B, 1999. 16(4): p. 669.

    Article  ADS  Google Scholar 

  60. Schnurer, M., et al., Absorption-Limited Generation of Coherent Ul-trashort Soft-X-Ray Pulses. Phys. Rev. Lett., 1999. 83(4): p. 722.

    Article  ADS  Google Scholar 

  61. Rundquist, A., et al., Phase Matching of Soft-X-Ray Harmonic Emission in Hollow-Core Fibers, in Science. 1998. p. 1412.

    Google Scholar 

  62. Xu, L., et al., Route to Phase Control of Ultrashort Light Pulses. Opt. Lett., 1996. 21(24): p. 2008–10.

    Article  ADS  Google Scholar 

  63. Christov, LP, Phase-dependent loss due to nonadiabatic ionization by sub-W-fs pulses. Opt. Lett., 1999. 24: p. 1425.

    Article  ADS  Google Scholar 

  64. Dietrich, P., F. Krausz, and P.B. Corkum, Determining the absolute carrier phase of a few-cycle laser pulse. Opt. Lett., 2000. 25: p. 16.

    Article  ADS  Google Scholar 

  65. Apolonski, A., et al., Controlling the phase evolution of few-cycle light pulses. Physical Review Letters, 2000. 85(4): p. 740–3.

    Article  ADS  Google Scholar 

  66. Jones, D.J., et al., Carrier-envelope phase control of femtosecond modelocked lasers and direct optical friequency synthesis. Science, 2000. 288(5466): p. 635.

    Article  ADS  Google Scholar 

  67. Jones, D.J., et al. Long-term locking of the carrier-envelope phase in a 15-fs Ti:S laset using a self-referencing frequency domain technique, in Conf. on Lasers and Electro-Optics. 2000. San Francisco.

    Google Scholar 

  68. Pshenichnikov, M.S. and D.A. Wiersma, Absolute-phase control of femtosecond pulses. 2000.

    Google Scholar 

  69. Nakamura, K., et al., Picosecond time-resolved X-ray diffraction from a silicon crystal under laser-induced breakdown, in Ultrafast Phenomena XH, T.Elsaesser, etal., Editors. 2001, Springer, p. 284–6.

    Chapter  Google Scholar 

  70. Lenchenkov, V., et al., Femtosecond Study of Electron Photodetachmentfrom Complex Anions: Fe(CN) (sub 6 exp 4-) and CuBr (sub 2 exp -) in H (sub 2) O, in Ultrafast Phenomena XII, T. Elsaesser, et al., Editors. 2001, Springer, p. 476–8.

    Chapter  Google Scholar 

  71. Vauthey, E., Investigation of the Ultrafast Dynamics of Charge Recombination of Ion Pairs Using Multiplex Transient Grating Spectroscopy, in Ultrafast Phenomena XII, T. Elsaesser, et al., Editors. 2001, Springer, p. 485–7.

    Chapter  Google Scholar 

  72. Son, D., et al., Femtosecond multicolor pump-probe investigation of ultrafast electron transfer of(NH sub 3)sub5 Ru (exp HI) NCRu (exp II) (CN) sub 5 exp - in solution, in Ultrafast Phenomena XII, T. Elsaesser, et al., Editors. 2001, Springer, p. 491–3.

    Chapter  Google Scholar 

  73. Kobayashi, T., Vibrational Dynamics in Molecules and Polymers Revealed by Sub-5-fs Real-time Spectroscopy, in Ultrafast Phenomena XII, T. Elsaesser, et al., Editors. 2001, Springer, p. 575–9.

    Chapter  Google Scholar 

  74. Brabec, C, et al., Direct observation of the ultrafast electron transfer process in a polymer/fullerene blend, in Ultrafast Phenomena XII, T. Elsaesser, et al., Editors. 2001, Springer, p. 589–91.

    Chapter  Google Scholar 

  75. Riedle, E., et al., Does the proton move during ultrafast excited state intramolecular proton transfer?, in Ultrafast Phenomena XII, T. Elsaesser, et al, Editors. 2001, Springer, p. 645–7.

    Chapter  Google Scholar 

  76. Kumazaki, S., et al., Ultrafast charge separation in the plant photosy stem I reaction center, in Ultrafast Phenomena XII, T. Elsaesser, et al, Editors. 2001, Springer, p. 665–7.

    Chapter  Google Scholar 

  77. Nagahara, T., Y. Kanematsu, and T. Okada, Femtosecond Time-Resolved Fluorescence Spectroscopy Utilizing Optical Kerr Shutter: Direct Observation of a Temporal Fluorescence Band Shape, in Ultrafast Phenomena XII, T. Elsaesser, et al, Editors. 2001, Springer, p. 192–4.

    Chapter  Google Scholar 

  78. Gruetzmacher, J. and N. Scherer, Time and frequency-gated FID: a new approach to study the vibrational dephasing of water, in Ultrafast Phenomena XII, T. Elsaesser, et al., Editors. 2001, Springer, p. 530–2.

    Chapter  Google Scholar 

  79. Shibata, Y., et al., Femtosecond fluorescence dynamics of porphyrins; internal conversion, energy relaxation, and quantum beats, in Ultrafast Phenomena XII, T. Elsaesser, etal, Editors. 2001, Springer, p. 689–91.

    Chapter  Google Scholar 

  80. Goodman, J., Statistical Optics. 1985: Wiley.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trebino, R. (2000). The Future of Pulse Measurement: New Dilemmas. In: Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1181-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1181-6_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5432-1

  • Online ISBN: 978-1-4615-1181-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics