Skip to main content

Abstract

Extremely short (~10 fs or less) pulse are now available in several labs and have a wide range of applications. You might think that such extremely short pulses couldn’t possibly be distorted and still be so short, but that’s absolutely not the case. Indeed, intensity and phase distortions not only exist in such incredibly short pulses, but they play decisive—and even useful—roles in many phenomena. For instance, pulses with identical spectra but different spectral phases yield wildly different efficiency in high-harmonic-generation processes [1]. The spectral phase also heavily affects wave-packet motion in organic molecules [2,3], population inversion in liquid [4] and gas [5] phases, and even the direction of a chemical reaction [6]. Moreover, a totally automated search for the best shaped pulse to optimize a pre-selected reaction channel was recently demonstrated [79]. Measuring the phase and amplitude of the excitation pulses in such experiments then allows a back-reconstruction of potential surfaces of the parent molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Zhou, J. Peatross, M.M. Murnane, H.C. Kapteyn, and I.P. Christov, Enhanced High-Harmonic Generation Using 25 fs Laser Pulses, Phys. Rev. Lett. 76(5), p. 752 (1996).

    Article  ADS  Google Scholar 

  2. C.J. Bardeen, Q. Wang, and C.V. Shank, Selective Excitation of Vibrational Wavepacket Motion Using Chirped Pulses, Phys. Rev. Lett. 75(19), p. 3410 (1995).

    Article  ADS  Google Scholar 

  3. B. Kohler, V.V. Yakovlev, J. Che, J.L. Krause, M. Messina, K.R. Wilson, N. Schwentner, R.M. Whitnell, and Y. Yan, Quantum Control of Wave Packet Evolution with Tailored Femtosecond Pulses, Phys. Rev. Lett. 74(17), p. 3360 (1995).

    Article  ADS  Google Scholar 

  4. V.V. Yakovlev, C.J. Bardeen, J. Che, J. Cao, and K.R. Wilson, Chirped pulse enhancement of multiphoton absorption in molecular iodine, J. Chem. Phys. 108(6), p. 2309 (1998).

    Article  ADS  Google Scholar 

  5. M. Fetterman, D. Goswami, D. Keusters, J.-K. Rhee, X.-J. Zhang, and W.S. Warren. Generation of amplified shaped pulses for highly adiabatic excitation, in Xlth International Conference on Ultrafast Phenomena. 1998. Garmisch-Parenkirchen, Germany, July 12-17: paper MoA3.

    Google Scholar 

  6. C.J. Bardeen, J. Che, K.R. Wilson, V.V. Yakovlev, P. Cong, B. Kohler, J.L. Krause, and M. Messina, Quantum Control of NaI Photodissociation Reaction Product States by Ultrafast Tailored Light Pulses, J. Phys. Chem. 101(20), p. 3815 (1997).

    Article  Google Scholar 

  7. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses, Science 282, p. 919 (1998).

    Article  ADS  Google Scholar 

  8. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Keifer, V. Seyfried, M. Strehle, and G. Gerber. Automated coherent control of chemical reactions and pulse compression by an evolutionary algorithm with feedback, in XIth International Conference on Ultrafast Phenomena. 1998. Garmisch-Parenkirchen, Germany, July 12-17: postdeadline paper ThD9.

    Google Scholar 

  9. M. Bergt, T. Brixner, B. Kiefer, M. Strehle, and G. Gerber, Controlling the Femtochemistry of Fe(CO)5, J. Chem. Phys. 103(49), p. 10381 (1999).

    Article  Google Scholar 

  10. G. Taft, A. Rundquist, M.M. Murnane, and H.C. Kapteyn, Ultrashort optical waveform measurement using frequency-resolved optical gating, Opt. Lett. 20(7), p. 743 (1995).

    Article  ADS  Google Scholar 

  11. G. Taft, A. Rundquist, M.M. Murnane, LP. Christov, H.C. Kapteyn, K.W. DeLong, D.N. Fittinghoff, M.A. Krumbügel, J. Sweetser, and R. Trebino, Measurement of 10-fs pulses, IEEE J. Select. Topics in Quantum Electron. 2(3), p. 575 (1996).

    Article  Google Scholar 

  12. A. Baltuška, Z. Wei, M.S. Pshenichnikov, and D.A. Wiersma, Optical pulse compression to 5 fs at a 1-MHz repetition rate, Opt. Lett. 22(2), p. 102 (1997).

    Article  ADS  Google Scholar 

  13. A. Baltuška, Z. Wei, M.S. Pshenichnikov, D.A. Wiersma, and R. Szipöcs, All-solid-state cavity-dumped sub-5-fs laser, Appl. Phys. B 65(2), p. 175 (1997).

    Article  ADS  Google Scholar 

  14. M. Nisoli, S.D. Silvestri, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, Compression of high-energy laser pulses below 5 fs, Opt. Lett. 22(8), p. 522 (1997).

    Article  ADS  Google Scholar 

  15. M. Nisoli, S. Stagira, S.D. Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, A novel-high energy pulse compression system: Generation of multigigawatt sub-5-fs pulses, Appl. Phys. B 65, p. 189 (1997).

    Article  ADS  Google Scholar 

  16. D.J. Kane and R. Trebino, Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating, IEEE J. Quantum Electron. 29(2), p. 571 (1993).

    Article  ADS  Google Scholar 

  17. R. Trebino and D.J. Kane, Using phase-retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating, J. Opt. Soc. Am. 10(5), p. 1101 (1993).

    Article  ADS  Google Scholar 

  18. E.B. Treacy, Measurement and interpretation of dynamic spectrograms of picosecond light pulses, J. Appl. Phys. 42(10), p. 3848 (1971).

    Article  ADS  Google Scholar 

  19. D.N. Fittinghoff, K.W. DeLong, R. Trebino, and C.L. Ladera, Noise sensitivity in frequency-resolved optical-gating measurements of utrashortpulses, J. Opt. Soc. Am. B 12(10), p. 1955 (1995).

    Article  ADS  Google Scholar 

  20. K.W. DeLong, R. Trebino, and D.J. Kane, Comparison of ultrashort-pulse fequency-resolved-optical-gating traces for three common beam geometries, J. Opt. Soc. Am. B 11(9), p. 1595 (1994).

    Article  ADS  Google Scholar 

  21. K.W. DeLong, D.N. Fittinghoff, and R. Trebino, Practical Issues in Ultrashort-Laser-Pulse Measurement Using Frequency-Resolved Optical Gating, IEEE J. Quantum Electron 32(7), p. 1253 (1996).

    Article  ADS  Google Scholar 

  22. R. Trebino, K.W. DeLong, D.N. Fittinghoff, J. Sweetser, M.A. Krumbügel, B. Richman, and D.J. Kane, Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating, Rev. Sei. Instrum. 68(9), p. 3277 (1997).

    Article  ADS  Google Scholar 

  23. J.-K. Rhee, T.S. Sosnowski, A.-C. Tien, and T.B. Norris, Real-time dispersion analyzer offemtosecond laser pulses with use of a spectrally and temporally resolved up-conversion technique, J. Opt. Soc. Am. 13(8), p. 1780 (1996).

    Article  ADS  Google Scholar 

  24. J.-P. Foing, J.-P. Likforaian, M. Joffre, and A. Migus, Femtosecond pulse phase measurement by spectrally resolved up-conversion: application to continuum compression, IEEE J. Quantum. Electron. QE-28(10), p. 2285 (1992).

    Article  ADS  Google Scholar 

  25. C. Iaconis and I.A. Walmsley, Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses, Opt. Lett. 23(10), p. 792 (1998).

    Article  ADS  Google Scholar 

  26. I.A. Walmsley and V. Wong, Characterization of the electric field of ultrashort optical pulses, J. Opt. Soc. Am. B 13(11), p. 2453 (1996).

    Article  ADS  Google Scholar 

  27. V. Wong and I.A. Walmsley, Ultrashort-pulse characterization from dynamic spectrograms by iterative phase retrieval, J. Opt. Soc. Am. 14(4), p. 944 (1997).

    Article  ADS  Google Scholar 

  28. L. Gallmann, D.H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, Characterization ofsub-6-fs pulses with spectral phase interferometry for direct electric-field reconstruction, Opt. Lett. 24(18), p. 1314(1999).

    Article  ADS  Google Scholar 

  29. C. Dorrer, Influence of the calibration of the detector on spectral interferometry, J. Opt. Soc. Am B 16(7), p. 1160(1999).

    Article  ADS  Google Scholar 

  30. C. Dorrer, B.d. Beauvoir, C.L. Blanc, S. Ranc, J.-P. Rousseau, P. Rousseau, J.-P. Chambaret, and F. Salin, Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction, Opt. Lett. 24(22), p. 1644 (1999).

    Article  ADS  Google Scholar 

  31. C. Dorrer, Implementation of spectral phase interferometry for direct electric-field reconstruction with a simultaneously recorded reference interferogram, Opt. Lett. 24(21), p. 1532 (1999).

    Article  ADS  Google Scholar 

  32. C. Iaconis and I.A. Walmsey, Self-referencing spectral interferometry for measuring ultrashort optical pulses, IEEE J. Quantum. Elec. 35(4), p. 501 (1999).

    Article  ADS  Google Scholar 

  33. M.S. Pshenichnikov, K. Duppen, and D.A. Wiersma, Time-resolved femtosecond photon echo probes bimodal solvent dynamics, Phys. Rev. Lett. 74(5), p. 674 (1995).

    Article  ADS  Google Scholar 

  34. P. Vöhringer, D.C. Arnett, T.-S. Yang, and N.F. Scherer, Time-gated photon echo spectroscopy in liquids, Chem. Phys. Lett. 237(5–6), p. 387 (1995).

    Article  ADS  Google Scholar 

  35. T. Steffen and K. Duppen, Time resolvedfour- and six-wave mixing in liquids. II. Experiments, J. Chem. Phys. 106(10), p. 3854 (1997).

    Article  ADS  Google Scholar 

  36. A. Tokmakoff and G.R. Fleming, Two-dimensional Raman spectroscopy of the intermolecular modes of liquid CS2, J. Chem. Phys. 106(7), p. 2569 (1997).

    Article  ADS  Google Scholar 

  37. A. Tokmakoff, M.J. Lang, D.S. Larsen, G.R. Fleming, V. Chernyak, and S. Mukamel, Two-Dimensional Raman Spectroscopy of Vibrational Interactions in Liquids, Phys. Rev. Lett. 79(14), p. 2702 (1997).

    Article  ADS  Google Scholar 

  38. K. Tominaga and K. Yoshihara, Fifth Order Optical Response of Liquid CS 2 Observed by Ultrafast Nonresonant Six-Wave Mixing, Phys. Rev. Lett. 74(15), p. 3061 (1995).

    Article  ADS  Google Scholar 

  39. W.P.D. Boeij, M.S. Pshenichnikov, and D.A. Wiersma, Ultrafast solvation dynamics explored by femtosecond photon echo spectroscopies, in Ann. Rev. Phys. Chem. 1998. p. 99.

    Google Scholar 

  40. A. Shirakawa, I. Sakane, and T. Kobayashi. Sub-5-fs pulse generation by pulse-fron-matched optical parametric amplification, in Xlth International Conference on Ultrafast Phenomena. 1998. Garmisch-Parenkirchen, Germany, July 12-17,1998: post-deadline paper ThD2.

    Google Scholar 

  41. K.W DeLong, C.L. Ladera, R. Trebino, B. Kohler, and K.R. Wilson, Ultrashort-pulse measurement using non-instantaneous nonlinearities: Raman effects in frequency-resolved optical gating, Opt. Lett. 20(5), p. 486 (1995).

    Article  ADS  Google Scholar 

  42. K.W. DeLong, R. Trebino, J. Hunter, and W.E. White, Frequency-resolved optical gating with the use of second-harmonic generation, J. Opt. Soc. Am. B 11(11), p. 2206 (1994).

    Article  ADS  Google Scholar 

  43. J. Paye, M. Ramaswamy, J.G. Fujimoto, and E.P. Ippen, Measurement of the amplitude anaphase of ultrashort light pulses from spectrally resolved autocorrelation, Opt. Lett. 18(22), p. 1946 (1993).

    Article  ADS  Google Scholar 

  44. J. Paye, How to Measure the Amplitude and Phase of an Ultrashort Light Pulse with an Autocorrelator and a Spectrometer, IEEE J. Quantum Electron. 30(11), p. 2693 (1994).

    Article  ADS  Google Scholar 

  45. T. Tsang, M.A. Krumbügel, K.W. DeLong, D.N. Fittinghoff, and R. Trebino, Frequency-resolved optical gating measurements of ultrashort pulses using surface third-harmonic generation, Opt. Lett. 21(17), p. 1381(1996).

    Article  ADS  Google Scholar 

  46. K. Shimoda, Introduction to laser physics. 2nd ed. Optical Sciences, ed. A.L.S. D.L. MacAdam, K. Shimoda, A.E. Siegman, T. Tamir. 1991, Berlin: Springer-Verlag.

    Google Scholar 

  47. L. Allen and J.H. Eberly, Optical resonance and two-level atoms. 1987, New York: Dover Publications, Inc.

    Google Scholar 

  48. P.N. Butcher and D. Cotter, The elements of nonlinear optics. 1990, Cambridge: Cambridge University Press.

    Book  Google Scholar 

  49. A.M. Weiner, Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation, IEEE J. Quantum Electron. QE-19(8), p. 1276 (1983).

    Article  ADS  Google Scholar 

  50. G. Taft, A. Rundquist, M.M. Murnane, LP Christov, H.C. Kapteyn, K.W. DeLong, D.F. Fittinghoff, M.A. Krumbuguel, J.N. Sweetser, and R. Trebino, Measurement of 10-fs Laser Pulses, IEEE J. Select. Topics Quantum Electr. 2(3), p. 575 (1996).

    Article  Google Scholar 

  51. A. Baltuška, M.S. Pshenichnikov, and D.A. Wiersma, Second-Harmonic Generation Frequency-Resolved Optical Gating in the Single-Cycle Regime, IEEE J. Quantum Electron. 35(4), p. 459 (1999).

    Article  ADS  Google Scholar 

  52. A. Baltuška, M.F. Emde, M.S. Pshenichnikov, and D.A. Wiersma, Early-time dynamics of the photo-excited hydrated electron, J. Phys. Chem. A 103, p. 10065 (1999).

    Article  Google Scholar 

  53. M.S. Pshenichnikov, A. Baltuska, R. Szipocs, and D.A. Wiersma, Sub-5-fs pulses: generation, characterisation, and experiments, in Ultrafast Phenomena XI, T. Elsaesser, et al., Editors. 1998, Springer: Berlin.

    Google Scholar 

  54. R.W. Boyd, Nonlinear optics. 1992, San Diego: Academic Press.

    Google Scholar 

  55. Y.R. Shen, The principles of nonlinear optics. 1984, New York: Wiley.

    Google Scholar 

  56. T. Brabec and F. Krausz, Nonlinear optical pulse propagation in the single-cycle regime, Phys. Rev. Lett. 78(17), p. 3282 (1997).

    Article  ADS  Google Scholar 

  57. N. Bloembergen, Nonlinear Optics. 1965, New York: Benjamin, Inc.

    Google Scholar 

  58. Y. Wang and R. Dragila, Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion, Phys. Rev. A 41(10), p. 5645 (1990).

    Article  ADS  Google Scholar 

  59. A. Umbrasas, J.-C. Diels, J. Jacob, G. Valiulis, and A. Piskarskas, Generation of femtosecond pulses through second-harmonic compression of the output of a Nd.YAG laser, Opt. Lett. 20(21), p. 2228 (1995).

    Article  ADS  Google Scholar 

  60. A.M. Weiner, A.M. Kan’an, and D.E. Leaird, High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal, Opt. Lett. 23(18), p. 1441 (1998).

    Article  ADS  Google Scholar 

  61. G.P. Agrawal, Nonlinear fiber optics. 2nd ed. 1995, San Diego, CA: Academic Press, Inc.

    Google Scholar 

  62. P.V. Mamyshev and S.V. Chernikov, Ultrashort-pulse propagation in optical fibers, Opt. Lett. 15(19), p. 1076(1990).

    Article  ADS  Google Scholar 

  63. J.T. Manassah, M.A. Mustafa, R.R. Alfano, and P.P. Ho, Spectral extent and pulse shape of the supercontinuum for ultrashort laser pulse, IEEE J. Quantum Electron. 22(1), p. 197 (1986).

    Article  ADS  Google Scholar 

  64. G.R. Fleming, Chemical Applications of Ultrafast Spectroscopy. The international series of monographs on chemistry, ed. J.E. Baldwin. 1986, New York: Oxford University Press.

    Google Scholar 

  65. R. Trebino, private communication (1997).

    Google Scholar 

  66. J.A. Squier, D.N. Fittinghoff, C.P.J. Baity, K.R. Wilson, M. Müller, and G.J. Brakenhoff, Characterization of femtosecond pulses focussed with high numerical aperture optics using interferometric surface-third-harmonic generation, Opt. Commun. 147, p. 153 (1998).

    Article  ADS  Google Scholar 

  67. D.N. Fittinghoff, J.A. Squier, C.P.J. Baity, J. Sweetser, R. Trebino, and M. Müller, Collinear Type II second-harmonic-generation frequency-resolved optical gating for use with high-numerical aperture objectives, Opt. Lett. 23(13), p. 1046 (1998).

    Article  ADS  Google Scholar 

  68. D.N. Fittinghoff, A.C. Millard, J.A. Squier, and M. Müller, Frequency-resolved optical gating measurement of ultrashort pulses passing through a high numerical aperture objective, IEEE J. Quantum Electron. 35(40), p. 479 (1999).

    Article  ADS  Google Scholar 

  69. L. Gallmann, G. Steinmeyer, D.H. Sutter, N. Matuschek, and U. Keller, Collinear type II second-harmonic-generation frequency-resolved optical gating for the characterization of sub-10-fs optical pulses, Opt. Lett. 25(4), p. 269 (2000).

    Article  ADS  Google Scholar 

  70. Z. Cheng, A. Fürbach, S. Sartania, M. Lenzner, C. Spielmann, and F. Krausz, Amplitude and chirp characterization of high-power laser pulses in the 5-fs regime, Opt. Lett. 24(4), p. 247 (1999).

    Article  ADS  Google Scholar 

  71. K.W. DeLong, D.N. Fittinghoff, R. Trebino, B. Köhler, and K. Wilson, Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections, Opt. Lett. 19(15), p. 2152 (1994).

    Article  ADS  Google Scholar 

  72. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical recipes in C. 1996, New York: Cambridge University Press.

    Google Scholar 

  73. A. Baltuška, M.S. Pshenichnikov, and D.A. Wiersma, Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating, Opt. Lett. 23(18), p. 1474 (1998).

    Article  ADS  Google Scholar 

  74. F. Krausz, Private communication, 1998.

    Google Scholar 

  75. L. Gallmann, D.H. Sutter, N. Matuschek, G. Steynmeyer, and U. Keller. Techniques for the characterization of sub-10-fs pulses: A comparison, in Ultrafast Optics. 1999. Monte-Verita, Switzerland, July 11-16: paper Th12.

    Google Scholar 

  76. V. Kabelka and A.V. Masalov, Angularly resolved autocorrelation for single-shot time-frequency imaging of ultrashort light pulse, Opt. Commun. 121(4–6), p. 141 (1995).

    Article  ADS  Google Scholar 

  77. V. Kabelka and A.V. Masalov, Time-frequency imaging of a single ultrashort light pulse from angularly resolved autocorrelation, Opt. Lett. 20(11), p. 1301 (1995).

    Article  ADS  Google Scholar 

  78. M. Schubert and B. Wilhelmi, Nonlinear optics and quantum electronics. 1986, New York: John Wiley.

    Google Scholar 

  79. S.A. Akhmanov, V.A. Vysloukh, and A.S. Chirkin, Optics of femtosecond laser pulses. 1992, New York: American Institute of Physics.

    Google Scholar 

  80. D. McMorrow, W.T. Lotshaw, and G.A. Kenney-Wallace, Femtosecond Optical Kerr Studies on the Origin of the Nonlinear Responses in Simple Liquids, IEEE J. Quantum Electron. 24(2), p. 443 (1988).

    Article  ADS  Google Scholar 

  81. D. McMorrow and W.T. Lotshaw, The frequency response of condensed-phase media to femtosecond optical pulses: spectral-filter effects, Chem. Phys. Lett. 174(1), p. 85 (1990).

    Article  Google Scholar 

  82. D. McMorrow, Separation of nuclear and electronic contributions to femtosecond four-wave mixing data, Opt. Commun. 86, p. 236 (1991).

    Article  ADS  Google Scholar 

  83. E.W. Castner, Y.J. Chang, Y.C. Chu, and G.E. Walrafen, The intermolecular dynamics of liquid water, J. Chem. Phys. 102(2), p. 653 (1994).

    Article  ADS  Google Scholar 

  84. S. Palese, L. Schilling, R.J.D. Miller, P.R. Staver, and W.T. Lotshaw, Femtosecond Optical Kerr Effect Studies of Water, J. Phys. Chem. 98, p. 6308 (1994).

    Article  Google Scholar 

  85. Release on the Refractive Index of Ordinary Water Substance as a Function of Wavelength, Temperature and Pressure. 1997, Erlangen, Germany: The International Association for the Properties of Water and Steam. 1.

    Google Scholar 

  86. A.H. Harvey, J.S. Gallagher, and J.M.L. Sengers, Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density, J. Phys. Chem. Ref. Data 27(4), p. 761 (1998).

    Article  ADS  Google Scholar 

  87. O. Duhr, E.T.H. Nibbering, G. Korn, G. Tempea, and F. Krausz, Generation of intense 8-fs pulses at 400nm, Opt. Lett. 24(1), p. 34 (1999).

    Article  ADS  Google Scholar 

  88. E.T.H. Nibbering, O. Duhr, and G. Korn, Generation of intense tunable 20-fs pulses near 400 nm by use of a gas-filled hollow fiber, Opt. Lett. 22(17), p. 1335 (1997).

    Article  ADS  Google Scholar 

  89. V.G. Dmitriev, G.G. Gurzadyan, and D.N. Nikogosyan, Handbook of non-linear optical crystals. 1991, Berlin: Springer-Verlag.

    Google Scholar 

  90. M.S. Pshenichnikov, W.P.d. Boeij, and D.A. Wiersma, Generation of 13-fs pulses from a cavity-dumped Ti:sapphire laser, Opt. Lett. 19, p. 572 (1994).

    Article  ADS  Google Scholar 

  91. E.J. Mayer, J. Möbius, A. Euteneuer, W.W. Rühle, and R. Szipöcs, Ultrabroadband chirped mirrors for femtosecond lasers, Opt. Lett. 22(8), p. 528 (1997).

    Article  ADS  Google Scholar 

  92. C. Rullère, ed. Femtosecond laser pulses. 1998, Springer-Verlag: Berlin. 310.

    Google Scholar 

  93. C.H.B. Cruz, R.L. Fork, W.H. Knox, and C.V. Shank, Spectral hole burning in large molecules probed with 10 fs optical pulses, Chem. Phys. Lett. 132(4-5), p. 341 (1986).

    Article  ADS  Google Scholar 

  94. A. Kummrow, M.F. Emde, A. Baltu_ka, D.A. Wiersma, and M.S. Pshenichnikov, Hydrated Electron Dynamics at a Five Femtosecond Time Scale, Zeitschrift für Physikalische Chemie 212, 153-160 (1999).

    Article  Google Scholar 

  95. M.F. Emde, A. Baltuška, A. Kummrow, M.S. Pshenichnikov, and D.A. Wiersma, Hydrated electron dynamics on a 5-fs time scale, in Ultrafast Phenomena XI, T. Elsaesser, et al., Editors. 1998, Springer: Berlin, p. 586.

    Chapter  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baltuska, A., Pshenichnikov, M.S., Wiersma, D.A. (2000). FROG in the Single-Cycle Regime. In: Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1181-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1181-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5432-1

  • Online ISBN: 978-1-4615-1181-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics