Skip to main content

Tumor Physiology and Resistance to Chemotherapy: Repopulation and Drug Penetration

  • Chapter
Clinically Relevant Resistance in Cancer Chemotherapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 112))

Abstract

Advances in the treatment of cancer with chemotherapy have been extremely limited over the past few decades. For a few malignancies, such as Hodgkin’s disease and other lymphomas, testicular cancer, and leukemia in children, cure is a realistic and frequently attainable goal, even in the advanced setting. However, for the majority of solid tumors the impact of chemotherapy on survival is at best modest. For tumors that have already metastasized, chemotherapy may provide palliation through transient improvement in symptoms, but has little or no impact on the duration of survival1. Adjuvant chemotherapy following surgery for apparently localized disease has shown a small survival benefit in several tumor types, including node-positive breast and colon cancer. However, for the majority of patients their disease will recur despite adjuvant chemotherapy, at which point it is generally incurable. The relative cell survival after a six month course of adjuvant chemotherapy for breast cancer has been estimated to be as high as 10-2 or even greater2. This failure to eradicate all tumor cells has commonly been attributed to the intrinsic resistance of tumor cells to chemotherapy, and the vast majority of articles about drug resistance have focused on causes or effects of genetically determined stable drug resistance at the cellular level

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chlebowski RT, Lillington LM. A decade of breast cancer clinical investigation: results as reported in the Program/Proceedings of the American Society of Clinical Oncology. J Clin Oncol, 12:1789–1795, 1994.

    PubMed  CAS  Google Scholar 

  2. Withers HR. From Bedside to Bench and Back. Academic Press, New York, NY, 1991.

    Google Scholar 

  3. Teicher BA, Herman TS, Holden SA, et al. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science, 247:1457–1461, 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Kerbel RS, Rak J, Kobayashi H, et al. Multicellular resistance: a new paradigm to explain aspects of acquired drug resistance of solid tumors. Cold Spring Harb Symp Quant Biol, 59:661–672, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Castiglione-Gertsch M, Tattersall M, Hacking A, et al. Retreating recurrent breast cancer with the same CMF-containing regimen used as adjuvant therapy. The International Breast Cancer Study Group. Eur J Cancer, 33:2321–2325, 1997.

    Article  PubMed  CAS  Google Scholar 

  6. Valagussa P, Tancini G, Bonadonna G. Salvage treatment of patients suffering relapse after adjuvant CMF chemotherapy. Cancer, 58:1411–1417, 1986.

    Article  PubMed  CAS  Google Scholar 

  7. Buzdar AU, Legha SS, Hortobagyi GN, et al. Management of breast cancer patients failing adjuvant chemotherapy with adriamycin-containing regimens. Cancer, 47:2798–2802, 1981.

    Article  PubMed  CAS  Google Scholar 

  8. Steel G. Growth Kinetics of Tumors. Clarendon Press, Oxford, UK, 1977.

    Google Scholar 

  9. Tubiana M. Tumor cell proliferation kinetics and tumor growth rate. Acta Oncol, 28:113–121, 1989.

    Article  PubMed  CAS  Google Scholar 

  10. Collins V, Loeffler R, Tivey H. Observations on growth rates of human tumors. AJR, 76:988–1000, 1956.

    CAS  Google Scholar 

  11. Salmon SE. Expansion of the growth fraction in multiple myeloma with alkylating agents. Blood, 45:119–129, 1975.

    PubMed  CAS  Google Scholar 

  12. Norton L, Simon R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep, 61:1307–1317, 1977.

    PubMed  CAS  Google Scholar 

  13. Norton L, Simon R. The Norton-Simon hypothesis revisited. Cancer Treat Rep, 70:163–169, 1986.

    PubMed  CAS  Google Scholar 

  14. Begg AC, Hofland I, Kummermehr J. Tumour cell repopulation during fractionated radiotherapy: correlation between flow cytometric and radiobiological data in three murine tumours. Eur J Cancer, 27:537–543, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Abe Y, Urano M, Kenton LA, et al. The accelerated repopulation of a murine fibrosarcoma, FSA-II, during the fractionated irradiation and the linear-quadratic model. Int.1 Radiat Oncol Biol Phys, 21:1529–1534, 1991.

    Article  CAS  Google Scholar 

  16. Suit H, Urano M. Repair of sublethal radiation injury in hypoxic cells of a C3H mouse mammary carcinoma. Radiat Res, 37:423–434, 1969.

    Article  PubMed  CAS  Google Scholar 

  17. Hermens AF, Barendsen GW. Cellular proliferation patterns in an experimental rhabdomyosarcoma in the rat. Eur J Cancer, 3:361–369, 1967.

    Article  PubMed  CAS  Google Scholar 

  18. Milas L, Yamada S, Hunter N, et al. Changes in TCD50 as a measure of clonogen doubling time in irradiated and unirradiated tumors. Int J Radiat Oncol Biol Phys, 21:1195–1202, 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Maciejewski B, Preuss-Bayer G, Trott KR. The influence of the number of fractions and of overall treatment time on local control and late complication rate in squamous cell carcinoma of the larynx. Int J Radiat Oncol Biol Phys, 9:321–328, 1983.

    Article  PubMed  CAS  Google Scholar 

  20. Withers FIR, Taylor JM, Maciejewski B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol, 27:131–146, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Bentzen SM, Thames HD. Clinical evidence for tumor clonogen regeneration: interpretations of the data. Radiother Oncol, 22:161–166, 1991.

    Article  PubMed  CAS  Google Scholar 

  22. Fyles A, Keane TJ, Barton M, et al. The effect of treatment duration in the local control of cervix cancer. Radiother Oncol, 25:273–279, 1992.

    Article  PubMed  CAS  Google Scholar 

  23. Lanciano RM, Pajak TF, Martz K, et al. The influence of treatment time on outcome for squamous cell cancer of the uterine cervix treated with radiation: a patterns-of-care study. Int J Radiat Oncol Biol Phys, 25:391–397, 1993.

    Article  PubMed  CAS  Google Scholar 

  24. Norin T, Onyango J. Radiotherapy in Burkitt’s lymphoma: conventional or superfractionated regime--early results. Int J Radiat Oncol Biol Phys, 2:399–406, 1977.

    Article  PubMed  CAS  Google Scholar 

  25. Saunders M, Dische S, Barrett A, et al. Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicentre trial. CHART Steering Committee. Lancet, 350:161–5, 1997.

    Article  PubMed  CAS  Google Scholar 

  26. Dische S, Saunders M, Barrett A, et al. A randomised multicentre trial of CHART versus conventional radiotherapy in head and neck cancer. Radiother Oncol, 44:123–136, 1997.

    Article  PubMed  CAS  Google Scholar 

  27. Saunders MI, Dische S, Barrett A, et al. Randomised multicentre trials of CHART vs conventional radiotherapy in head and neck and non-small-cell lung cancer: an interim report. CHART Steering Committee. Br J Cancer, 73:1455–1462, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Hansen O, Overgaard J, Hansen HS, et al. Importance of overall treatment time for the outcome of radiotherapy of advanced head and neck carcinoma: dependency on tumor differentiation. Radiother Oncol, 43:47–51, 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Skladowski K, Maciejewski B, Golen M, et al. Randomized clinical trial on 7-daycontinuous accelerated irradiation (CAIR) of head and neck cancer - report on 3-year tumour control and normal tissue toxicity. Radiother Oncol, 55:101–110, 2000.

    Article  PubMed  CAS  Google Scholar 

  30. Kinsella TJ, Gould MN, Mulcahy RT, et al. Keynote address: integration of cytostatic agents and radiation therapy: a different approach to “proliferating” human tumors. Int J Radiat Oncol Biol Phys, 20:295–302, 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Ezekiel MP, Bonner JA, Robert F, et al. Phase I trial of chimerized anti-epidermal growth factor receptor (Anti-EGFr) antibody in combination with either once-daily or twice-daily irradiation for locally advanced head and neck malignancies. Proc Amer Soc Clin Oncol, 18:1501, 1999.

    Google Scholar 

  32. Stephens TC, Peacock JH. Tumour volume response, initial cell kill and cellular repopulation in B16 melanoma treated with cyclophosphamide and 1-(2-ehloroethyl)-3- cyclohexyl-1-nitrosourea. Br J Cancer, 36:313–321, 1977.

    Article  PubMed  CAS  Google Scholar 

  33. Rosenblum ML, Knebel KD, Vasquez DA, et al. In vivo clonogenic tumor cell kinetics following 1,3-bis(2-chloroethyl)-1-nitrosourea brain tumor therapy. Cancer Res, 36:3718–3725, 1976.

    PubMed  CAS  Google Scholar 

  34. Rosenblum ML, Gerosa MA, Dougherty DV, et al. Improved treatment of a brain-tumor model. Part 1: Advantages of single-over multiple-dose BCNU schedules. J Neurosurg, 58:177–182, 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Milas L, Nakayama T, Hunter N, et al. Dynamics of tumor cell clonogen repopulation in a murine sarcoma treated with cyclophosphamide. Radiother Oncol, 30:247–253, 1994.

    Article  PubMed  CAS  Google Scholar 

  36. Walter J, Maurer-Schultze B. Tumor cell recruitment in the mouse adenocarcinoma EO 771 directly demonstrated by double labeling with [3H]- and [14C] thymidine and flow cytometry. J Cancer Res Clin Oncol, 115:53–60, 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Sutherland RM. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science, 240:177–184, 1988.

    Article  PubMed  CAS  Google Scholar 

  38. Durand RE. Multicell spheroids as a model for cell kinetic studies. Cell Tissue Kinet, 23:141–159, 1990.

    PubMed  CAS  Google Scholar 

  39. Durand RE, Vanderbyl SL. Tumor resistance to therapy: a genetic or kinetic problem? Cancer Commun, 1:277–283, 1989.

    PubMed  CAS  Google Scholar 

  40. Durand RE, Vanderbyl SL. Schedule dependence for cisplatin and etoposide multifraction treatments of spheroids. J Natl Cancer Inst, 82:1841–1845, 1990.

    Article  PubMed  CAS  Google Scholar 

  41. Bourhis J, Wilson G, Wibault P, et al. Rapid tumor cell proliferation after induction chemotherapy in oropharyngeal cancer. Laryngoscope, 104:468–472, 1994.

    Article  PubMed  CAS  Google Scholar 

  42. Tannock IF. Conventional cancer therapy: promise broken or promise delayed? Lancet, 351 Suppl 2:SII9–16, 1998.

    Article  Google Scholar 

  43. Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res, 49:4373–4384, 1989.

    PubMed  CAS  Google Scholar 

  44. Lagarde AE, Pouyssegur JM. The Na+:H+ antiport in cancer. Cancer Biochem Biophys, 9:1–14, 1986.

    PubMed  CAS  Google Scholar 

  45. Musgrove E, Seaman M, Hedley D. Relationship between cytoplasmic pH and proliferation during exponential growth and cellular quiescence. Exp Cell Res, 172:65–75, 1987.

    Article  PubMed  CAS  Google Scholar 

  46. Sutherland RM, Eddy HA, Bareham B, et al. Resistance to adriamycin in multicellular spheroids. Int J Radiat Oncol Biol Phys, 5:1225–1230, 1979.

    Article  PubMed  CAS  Google Scholar 

  47. West GW, Weichselbaum R, Little JB. Limited penetration of methotrexate into human osteosarcoma spheroids as a proposed model for solid tumor resistance to adjuvant chemotherapy. Cancer Res, 40:3665–3668, 1980.

    PubMed  CAS  Google Scholar 

  48. Nederman T, Carlsson J. Penetration and binding of vinblastine and 5-fluorouracil in cellular spheroids. Cancer Chemother Pharmacol, 13:131–135, 1984.

    Article  PubMed  CAS  Google Scholar 

  49. Kerr DJ, Kaye SB. Aspects of cytotoxic drug penetration, with particular reference to anthracyclines. Cancer Chemother Pharmacol, 19:1–5, 1987.

    Article  PubMed  CAS  Google Scholar 

  50. Wartenberg M, Hescheler J, Acker H, et al. Doxorubicin distribution in multicellular prostate cancer spheroids evaluated by confocal laser scanning microscopy and the “optical probe technique”. Cytometry, 31:137–145, 1998.

    Article  PubMed  CAS  Google Scholar 

  51. Durand RE. Use of Hoechst 33342 for cell selection from multicell systems. J Histochem Cytochem, 30:117–122, 1982.

    Article  PubMed  CAS  Google Scholar 

  52. Chaplin DJ, Durand RE, Olive PL. Cell selection from a murine tumour using the fluorescent probe Hoechst 33342. Br J Cancer, 51:569–572, 1985.

    Article  PubMed  CAS  Google Scholar 

  53. Durand RE. Chemosensitivity testing in V79 spheroids: drug delivery and cellular microenvironment. J Natl Cancer Inst, 77:247–252, 1986.

    PubMed  CAS  Google Scholar 

  54. Durand RE. Distribution and activity of antineoplastic drugs in a tumor model. J Natl Cancer Inst, 81:146–152, 1989.

    Article  PubMed  CAS  Google Scholar 

  55. Durand RE. Slow penetration of anthracyclines into spheroids and tumors: a therapeutic advantage? Cancer Chemother Pharmacol, 26:198–204, 1990.

    Article  PubMed  CAS  Google Scholar 

  56. Cowan DS, Hicks KO, Wilson WR. Multicellular membranes as an in vitro model for extravascular diffusion in tumours. Br J Cancer Suppl, 27:528–31, 1996.

    Google Scholar 

  57. Hicks KO, Ohms SJ, van ZijI PL, et al. An experimental and mathematical model for the extravascular transport of a DNA intercalator in tumours. Br J Cancer, 76:894–903, 1997.

    Article  PubMed  CAS  Google Scholar 

  58. Minchinton AI, Wendt KR, Clow KA, et al. Multilayers of cells growing on a permeable support. An in vitro tumour model. Acta Oncol, 36:13–16, 1997.

    Article  PubMed  CAS  Google Scholar 

  59. Tunggal JK, Cowan DS, Shaikh 11, et al. Penetration of anticancer drugs through solid tissue: a factor that limits the effectiveness of chemotherapy for solid tumors. Clin Cancer Res, 5:1583–1586, 1999.

    PubMed  CAS  Google Scholar 

  60. Phillips RM, Loadman PM, Cronin BP. Evaluation of a novel in vitro assay for assessing drug penetration into avascular regions of tumours. Br J Cancer, 77:2112–2119, 1998.

    Article  PubMed  CAS  Google Scholar 

  61. Cowan DSM, Tannock IF. Factors which influence the penetration of methotrexate through solid tissue. Int J Cancer, 91:120–125, 2000.

    Article  Google Scholar 

  62. Tannock IF. The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer, 22:258–273, 1968.

    Article  PubMed  CAS  Google Scholar 

  63. Hirst DG, Denekamp J. Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinet, 12:31–42, 1979.

    PubMed  CAS  Google Scholar 

  64. Wilson WR, Hicks KO. Measurement of extravascular drug diffusion in multicellular layers. Br J Cancer, 79:1623–1626, 1999.

    Article  PubMed  CAS  Google Scholar 

  65. Tunggal JK, Melo T, Ballinger JR, et al. The influence of expression of P-glycoprotein on the penetration of anticancer drugs through multicellular layers. Int J Cancer, 86:101–107, 2000.

    Article  PubMed  CAS  Google Scholar 

  66. Tunggal JK, Ballinger JR, Tannock IF. Influence of cell concentration in limiting the therapeutic benefit of P-glycoprotein reversal agents. Int J Cancer, 81:741–747, 1999.

    Article  PubMed  CAS  Google Scholar 

  67. Van de Vrie W, Jonker AM, Marquet RL, et al. The chemosensitizer cyclosporin A enhances the toxic side-effects of doxorubicin in the rat. J Cancer Res Clin Oncol, 120:533–538, 1994.

    Article  PubMed  Google Scholar 

  68. Arvelo F, Poupon MF, Bichat F, et al. Adding a reverser (verapamil) to combined chemotherapy overrides resistance in small cell lung cancer xenografts. Eur J Cancer, 31A:1862–1868, 1995.

    Article  PubMed  CAS  Google Scholar 

  69. Dalton WS, Crowley JJ, Salmon SS, et al. A phase III randomized study of oral verapamil as a chemosensitizer to reverse drug resistance in patients with refractory myeloma. A Southwest Oncology Group study. Cancer, 75:815–820, 1995.

    Article  PubMed  CAS  Google Scholar 

  70. Wishart GC, Bissett D, Paul J, et al. Quinidine as a resistance modulator of epirubicin in advanced breast cancer: mature results of a placebo-controlled randomized trial. J Clin Oncol, 12:1771–1777, 1994.

    PubMed  CAS  Google Scholar 

  71. Milroy R. A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer. West of Scotland Lung Cancer Research Group, and the Aberdeen Oncology Group. Br J Cancer, 68:813–818, 1993.

    Article  PubMed  CAS  Google Scholar 

  72. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res, 47:3039–3051, 1987.

    PubMed  CAS  Google Scholar 

  73. Helmlinger G, Yuan F, Dellian M, et al. Interstitial pH and p02 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med, 3:177–182, 1997.

    Article  PubMed  CAS  Google Scholar 

  74. Minchinton Al, Durand RE, Chaplin DJ. Intermittent blood flow in the KHT sarcoma--flow cytometry studies using Hoechst 33342. Br J Cancer, 62:195–200, 1990.

    Article  Google Scholar 

  75. Yamashiro DJ, Maxfield FR. Acidification of endocytic compartments and the intracellular pathways of ligands and receptors. J Cell Biochem, 26:231–246, 1984.

    Article  PubMed  CAS  Google Scholar 

  76. Overly CC, Lee KD, Berthiaume E, et al. Quantitative measurement of intraorganelle pH in the endosomal-lysosomal pathway in neurons by using ratiometric imaging with pyranine. Proc Nati Acad Sci USA, 92:3156–3160, 1995.

    Article  CAS  Google Scholar 

  77. Altan N, Chen Y, Schindler M, et al. Defective acidification in human breast tumor cells and implications for chemotherapy. J Exp Med, 187:1583–1598, 1998.

    Article  PubMed  CAS  Google Scholar 

  78. Thorens B, Vassalli P. Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nature, 321:618–620, 1986.

    Article  PubMed  CAS  Google Scholar 

  79. Pless DD, Wellner RB. In vitro fusion of endocytic vesicles: effects of reagents that alter endosomal pH. J Cell Biochem, 62:27–39, 1996.

    Article  PubMed  CAS  Google Scholar 

  80. Dedhar S, Hannigan GE, Rak J, et al. The Extracellular Environment and Cancer, 3rd edition, McGraw Hill, New York, NY, 1998.

    Google Scholar 

  81. Khokha R, Waterhouse P. The role of tissue inhibitor of metalloproteinase-1 in specific aspects of cancer progression and reproduction. I Neurooncol, 18:123–127, 1994.

    Article  CAS  Google Scholar 

  82. Gomez DE, Alonso DF, Yoshiji H, et al. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol, 74:111–122, 1997.

    PubMed  CAS  Google Scholar 

  83. Kobayashi H, Man S, Graham CH, et al. Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc Natl Acad Sci USA, 90:3294–3298, 1993.

    Article  PubMed  CAS  Google Scholar 

  84. St. Croix B, Florenes VA, Rak JW, et al. Impact of the cyclin-dependent kinase inhibitor p27Kip 1 on resistance of tumor cells to anticancer agents. Nature Med, 2:1204–1210, 1996.

    Article  PubMed  CAS  Google Scholar 

  85. Wojtowicz-Praga SM, Dickson RB, Hawkins MJ. Matrix metalloproteinase inhibitors. Invest New Drugs, 15:61–75, 1997.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, A.J., Tannock, I.F. (2002). Tumor Physiology and Resistance to Chemotherapy: Repopulation and Drug Penetration. In: Andersson, B., Murray, D. (eds) Clinically Relevant Resistance in Cancer Chemotherapy. Cancer Treatment and Research, vol 112. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1173-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1173-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5428-4

  • Online ISBN: 978-1-4615-1173-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics