Skip to main content

Peroxisome Proliferator Activator Receptor Gamma Agonists Inhibit the Development of Atherosclerosis in Low Density Lipoprotein Receptor-Deficient Male Mice

  • Chapter
Peroxisome Proliferator Activated Receptors: From Basic Science to Clinical Applications

Part of the book series: Medical Science Symposia Series ((MSSS,volume 18))

  • 86 Accesses

Abstract

Atherosclerosis is the leading cause of morbidity and mortality in Western societies and is a major complication in patients with Type 2 diabetes [1,2]. Other risk factors include obesity, hyperlipidemia, and hypertension. Atherosclerosis can be considered to be a form of chronic inflammation involving responses of macrophages and lymphocytes to elevated levels of cholesterol [3]. Atherosclerosis is believed to be initiated by the oxidative modification of low density lipoprotein (LDL), which exerts numerous atherogenic effects on the artery wall [4]. Oxidized LDL (oxLDL) acts on endothelial cells to induce secretion of various chemokines, including MCP-1 and to up-regulate cell adhesion molecules, such as VCAM-1. Monocytes enter the vessel wall at these sites and migrate into the intima. While in the intima, the monocytes differentiate into macrophages and begin to take up oxLDL via scavenger receptors such as scavenger receptor A (SRA) and CD36 [5,6]. Unable to transport the oxLDL cholesterol out as rapidly as it is engulfed, these macrophages are transformed into “foam cells,” the hallmark of early atherosclerotic lesions. With progressive monocyte recruitment and uptake of oxLDL, foam cells become more numerous, resulting in the formation of fatty streaks. Smooth muscle cells can then begin to migrate into the intima and proliferate. These cells also take up modified LDL particles and synthesize extracellular matrix proteins, leading to the development of a fibrous cap. Necrosis and apoptosis of cells within the lesion result in the development of a necrotic core.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kannel WB, McGee DL. Diabetes and cardiovascular disease: The Framingham study. JAMA 1979;241:2035–38.

    Article  PubMed  CAS  Google Scholar 

  2. Uusitupa M, Niskanen L, Siitonen O. 5-year incidence of atherosclerotic vascular disease in relation to general risk factors, insulin levels, and abnormalities in lipoprotein composition in non-insulin-dependent diabetic and nondiabetic subjects. Circulation 1990; 82:27–36.

    Article  PubMed  CAS  Google Scholar 

  3. Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993; 362:801–9.

    Article  PubMed  CAS  Google Scholar 

  4. Steinberg D, Witztum JL. Lipoproteins, lipoprotein, oxidation, and atherogenesis. Philadelphia: W.B. Saunders Co., 1999: 458–75.

    Google Scholar 

  5. Suzuki H, Kurihara Y, Takeya M, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 1997;386:292–96.

    Article  PubMed  CAS  Google Scholar 

  6. Febbraio M, Podrez E, Smith J, et al. Targeted disruption of the class B scavenger receptor CD 36 protects against atherosclerotic lesion development in mice. J Clin Immunol 2000; 105(8):1049–56.

    CAS  Google Scholar 

  7. Gould LA, Rossouw JE, Santanello NC, et al. Cholesterol reduction yields clinical benefit: Impact of statin trials. Circulation 1998;97:946–52.

    Article  PubMed  CAS  Google Scholar 

  8. Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996;45:1661–69.

    Article  PubMed  CAS  Google Scholar 

  9. Barak Y, Nelson MC, Ong ES, et al. PPARγ is required for placental, cardiac, and adipose tissue development. Mol Cell 1999;4(4):585–95.

    Article  PubMed  CAS  Google Scholar 

  10. Rosen ED, Sarraf P, Troy AE, et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 1999;4(4):611–17.

    Article  PubMed  CAS  Google Scholar 

  11. Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 1998;391(6662):79–82.

    Article  PubMed  CAS  Google Scholar 

  12. Ricote M, Huang J, Fajas L, et al. Expression of the peroxisome proliferator-activated receptor γ (PPARγ) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci USA 1998; 95:7614–19.

    Article  PubMed  CAS  Google Scholar 

  13. Tontonoz P, Nagy L, Alvarez JGA, et al. PPARy promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998;93:241–52.

    Article  PubMed  CAS  Google Scholar 

  14. Nagy L, Tontonoz P, Alvarez JGA, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR-gamma. Cell 1998;93:229–40.

    Article  PubMed  CAS  Google Scholar 

  15. Li A, Brown K, Silvestre M, et al. Peroxisome proliferator-activated receptor y ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106(4):523–31.

    Article  PubMed  CAS  Google Scholar 

  16. Jackson SM, Parhami F, Xi XP, et al. Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler Thromb Vase Biol 1999;19(9):2094–104.

    Article  CAS  Google Scholar 

  17. Goetze S, Xi XP, Kawano H, et al. PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells. J Cardiovasc Pharmacol 1999; 33(5):798–806.

    Article  PubMed  CAS  Google Scholar 

  18. Collins AR, Meehan WP, Kintscher U, et al. Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vase Biol 2001;21(3):365–71.

    Article  CAS  Google Scholar 

  19. Han K, Chang M, Boullier A, et al. Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator-activated receptor γ. J Clin Invest 2000;106(6):793–802.

    Article  PubMed  CAS  Google Scholar 

  20. Chawla A, Boisvert WA, Lee CH, et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001:7(1): 161–71.

    Article  PubMed  CAS  Google Scholar 

  21. Costet P, Luo Y, Wang N, et al. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 2000;275(36):28240–45.

    PubMed  CAS  Google Scholar 

  22. Venkateswaran A, Repa JJ, Lobaccaro JM, et al. Human white/murine ABC8 mRNA levels are highly induced in lipid-loaded macrophages. A transcriptional role for specific oxysterols. J Biol Chem 2000;275(19): 14700–7.

    Article  PubMed  CAS  Google Scholar 

  23. Venkateswaran A, Laffitte BA, Joseph SB, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci USA 2000;97(22): 12097–102.

    Article  PubMed  CAS  Google Scholar 

  24. Bodzioch M, Orso E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999;22(4):347–51.

    Article  PubMed  CAS  Google Scholar 

  25. Brooks-Wilson A, Marcil M, Clee SM, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999;22(4):336–45.

    Article  PubMed  CAS  Google Scholar 

  26. Lawn RM, Wade DP, Garvin MR, et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest 1999; 104(8): R25–R31.

    Article  PubMed  CAS  Google Scholar 

  27. Minamikawa J, Yamaguchi M, Inoue D, et al. Another potential use of troglitazone in non-insulin dependent diabetes mellitus. J Clin Endocrinol Metab 1998;83:1041.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Li, A.C., Glass, C.K. (2002). Peroxisome Proliferator Activator Receptor Gamma Agonists Inhibit the Development of Atherosclerosis in Low Density Lipoprotein Receptor-Deficient Male Mice. In: Fruchart, JC., Gotto, A.M., Paoletti, R., Staels, B., Catapano, A.L. (eds) Peroxisome Proliferator Activated Receptors: From Basic Science to Clinical Applications. Medical Science Symposia Series, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1171-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1171-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5427-7

  • Online ISBN: 978-1-4615-1171-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics