Androgen Receptor Interacting Proteins: Co-Activators And Co-Repressors

  • Cynthia A. Heinlein
  • Erik R. Sampson
  • Chang Chawnshang 


Androgens play critical roles in male sexual differentiation, pubertal sexual maturation, the maintenance of spermatogenesis, and male gonadotropin regulation (Keller et al., 1996; McLachlan et al., 1996; Roy et al., 1999; Sheckter et al., 1989). The androgen receptor (AR), a 110-kDa ligand-inducible transcription factor, mediates androgen signaling by binding to androgen response elements (ARE) within the promoters of target genes (Chang et al., 1988a; Chang et al., 1988b; Lubahn et al., 1988; Tilley et al., 1989; Trapman et al., 1988). Mutations of AR that alter its ability to bind androgens, or alter its transcriptional activity after ligand binding, may result in male infertility, or complete or partial androgen insensitivity (De Bellis et al., 1994; Gottlieb et al, 2001; Mowszowicz et al., 1993; Quigley et al., 1995; Tyagi et al., 1998). Somatic AR mutations have also been identified in some prostate tumors (Bentel and Tilley, 1996).


Androgen Receptor Focal Adhesion Kinase Androgen Receptor Protein Steroid Receptor Coactivator Human Androgen Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarnisalo, P., Palvimo, J.J. and Janne, O.A. CREB- binding protein in androgen receptor mediated signalling. Proc. Natl. Acad. Sci. USA 1998; 95: 2122–2127PubMedCrossRefGoogle Scholar
  2. Abraham, G.E. Ovarian and adrenal contribution to peripheral androgens during the menstrual cycle. J. Clin. Endocrinol. Metab. 1974; 39: 340–346PubMedCrossRefGoogle Scholar
  3. Agoulnik, I., Stenoien, D., Mancini, M.A. and Weigel, N.L. A subset of coactivators broadens ligand specificity for transactivation by the androgen receptor. Keystone Symposia 2000; : 116(abstract)Google Scholar
  4. Agulnick, A.D., Taira, M, Breen, J.J., Tanaka, T., Dawid, LB. and Westphal, H. Interactions of the LIM-domain-binding factor Lbd1 with LIM homeodomain proteins. Nature 1996; 384: 270–272PubMedCrossRefGoogle Scholar
  5. Ahmed, S.F., Cheng, A., Dovey, L., Hawkins, J.R., Martin, H., Rowland, J., Shimura, N., Tait, A.D. and Hughes, LA. Phenotypic features, androgen receptor binding, and mutational analysis in 278 clinical cases reported as androgen insensitivity syndrome. J. Clin. Endocrinol. Metab. 2000; 85: 658–665PubMedCrossRefGoogle Scholar
  6. Ait-Si-Ali, S., Ramirez, S., Barre, F.X., Dkhissi, F., MAgnaghi-Jaulin, L., Girault, J.A., Robin, P., Knibiehler, M., Pritchard, L.L., Ducommum, B., Trouche, D. and Harel-Belian, A. Histone acetyltransferase activity of CBP is controlled by cyclin-dependent kinases and oncoprotein El A. Nature 1998; 396: 184–186PubMedCrossRefGoogle Scholar
  7. Alen, P., Claessens, F., Schoenmakers, E., Swinnen, J.V., Verhoeven, G., Rombauts, W. and Peeters, B. Interaction of the putative androgen receptor-specific coactivator ARA70/ELElα with multiple steroid receptors and identification of an internally deleted ELE1β isoform. Molecular Endocrinol. 1999a; 13: 117–128CrossRefGoogle Scholar
  8. Alen, P., Claessens, F., Verhoeven, G., Rombauts, W. and Peeters, B. The androgen receptor amino-terminal domain plays a key role in p160 coactivator stimulated gene transcription. Mol. Cell. Biol. 1999b; 19: 6085–6097PubMedGoogle Scholar
  9. Alland, L., Muhle, R., Jr, H.H., Potes, J., Chin, L., Scheiber-Agus, N. and R.A., D. Role for N-CoR and histone deactelyase in Sin3-mediated transcriptional repression. Nature 1997; 387: 49–55PubMedCrossRefGoogle Scholar
  10. Anzick, S.L., Kononen, J., Walker, R.L., Azorsa, D.O., Tanner, M.M., Guan, X.Y., Sauter, G., Kallioniemi, O.P., Trent, J.M. and Meltzer, P.S. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 1997; 277: 965–968PubMedCrossRefGoogle Scholar
  11. Bach, I. The LIM domain: regulation by association. Mechanism Dev. 2000; 91: 5–17CrossRefGoogle Scholar
  12. Bach, I., Carriere, C, Ostendorff, H.P., Andersen, B. and Rosenfeld, M.G. A family of LIM domain associated cofactors confer transcriptional synergism between LIM and Otx homeodomain proteins. Genes Dev. 1997; 11: 1370–1380PubMedCrossRefGoogle Scholar
  13. Bach, I., Rodriguez-Esteban, C, Carriere, C, Bhushan, A., Krones, A., Rose, D.W., Glass, C.K., Andersen, B., Belmonte, J.C.I, and Rosenfeld, M.G. RLIM inhibits functional activity of LIM homeodomain transcription factors via recruitment of the histone deacetylase complex. Nat. Genet. 1999; 22: 394–399PubMedCrossRefGoogle Scholar
  14. Barettino, D., Ruiz, M.d.M.V. and Stunnenberg, H.G. Characterization of the ligand-dependent transactivation domain of the thyroid hormone receptor. EMBO J. 1994; 13: 3039–3049PubMedGoogle Scholar
  15. Barker, N., Hurlstone, A., Musisi, H., Miles, A., Bienz, M. and Clevers, H. The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J. 2001; 20: 4935–4943PubMedCrossRefGoogle Scholar
  16. Barsony, J., Pike, J.W., DeLuca, H.F. and Marx, S.J. Immunocytology with microwave-fixed fibroblasts shows lα,25-dihydroxyvitamin D3-dependent rapid and estrogen-dependent slow reorganization of vitamin D receptors. J. Cell Biol. 1990; 111: 2385Google Scholar
  17. Bentel, J.M. and Tilley, W.D. Androgen receptors in prostate cancer. J. Endocrinol. 1996; 151: 1–11PubMedCrossRefGoogle Scholar
  18. Berrevoets, C.A., Doesburg, P., Steketee, K., Trapman, J. and Brinkman, A.O. Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor 2). Mol. Endocrinol. 1998; 12: 1172–1183PubMedCrossRefGoogle Scholar
  19. Bevan, C.L., Hoare, S., Claessens, F., Heery, D.M. and Parker, M.G. The AF-1 and AF-2 domains of the androgen receptor interact with distinct regions of SRC 1. Mol. Cell. Biol. 1999; 19: 8383–8392PubMedGoogle Scholar
  20. Blanco, J.C.G., Minucci, S., Lu, J., Yang, X., Walker, K.K., Chen, H., Evans, R.M., Nakatani, Y. and Ozato, K. The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev. 1998; 12: 1638–1651PubMedCrossRefGoogle Scholar
  21. Bocquel, M.T., Kumar, V., Chambon, P. and Gronemeyer, H. The contribution of the N- and C- terminal regions of the steroid receptors to activation of transcription is both receptor and cell specific. Nucleic Acids Res. 1989; 17: 2581–2595PubMedCrossRefGoogle Scholar
  22. Boonyaratanakornkit, V., Melvin, V., Prendergast, P., Altmann, M., Ronfani, L., Bianchi, M.E., Taraseviciene, L., Nordeen, S.K., Allegretto, E.A. and Edwards, D.P. High-mobility group proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol. Cell. Biol. 1998; 18: 4471–7787PubMedGoogle Scholar
  23. Boudreau, N.J. and Jones, P.L. Extracellular matrix and integrin signalling: the shape of things to come. Biochem. J. 1999; 339: 481–488PubMedCrossRefGoogle Scholar
  24. Bourguet, W., Germain, P. and Gronemeyer, H. Nuclear receptor ligand binding domains: three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol. Sci. 2000; 21: 381–388PubMedCrossRefGoogle Scholar
  25. Brady, M.E., Ozanne, D.M., Gaughan, L., Waite, L, Cook, S., Neal, D.E. and Robson, C.N. Tip60 is a nuclear hormone receptor coactivator. J. Biol. Chem. 1999; 274: 17599–17604PubMedCrossRefGoogle Scholar
  26. Brannon, M, Gomperts, M., Sumoy, L., Moon, R. and Kimelman, D. Beta catenin/XTcf-3 complex binds the Siamois promoter to regulate dorsal axis formation in Xenopus. Genes Dev. 1997; 11: 2359–2370PubMedCrossRefGoogle Scholar
  27. Briscoe, J., Gushin, D., Rogers, N.C., Watling, D., Muller, M., Horn, F., Heinrich, P., Stark, G.R. and Ker, I.M. JAKs, STATs and signal transduction in response to interferons and other cytokines. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996; 351: 167–171PubMedCrossRefGoogle Scholar
  28. Brzozowski, A.M., Pike, A.C., Dauter, Z., Hubbard, R.E., Bonn, T., Engelstrom, O., Ohman, L., Greene, G.L., Gustafsson, J.-A. and Carlquist, M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997; 389: 753–758PubMedCrossRefGoogle Scholar
  29. Burns, K., Duggan, B., Atkinson, E.A., Famulski, K.S., Nemer, M., Bleackley, R.C. and Michalak, M. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 1994; 367: 476–480PubMedCrossRefGoogle Scholar
  30. Byar, D.P. and Corle, D.K. Hormone therapy for prostate cancer: results of the Veterens Administration Cooperative Urological Research Group studies. Natl. Cancer Inst. Monogr. 1988; 7: 165–170Google Scholar
  31. Cairns, P., Okami, K., Halachmi, S., Halachmi, N., Esteller, M., Herman, J.G., Jen, J., Isaacs, W.B., Bova, G.S. and Sidransky, D. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 1997; 57: 4997–5000PubMedGoogle Scholar
  32. Caplan, A.J., Langley, E., Wilson, E.M. and Vidal, J. Hormone-dependent transactivation by the human androgen receptor is regulated by the dnaJ protein. J. Biol. Chem. 1995; 270: 5251–5257PubMedCrossRefGoogle Scholar
  33. Cavailles, V., Dauvois, S., Danielian, P.S. and Parker, M.G. Ineraction proteins with transcriptionally active estrogen receptors. Proc. Nalt. Acad. Sci. USA 1994; 91: 10009–10013CrossRefGoogle Scholar
  34. Chakravarti, D., LaMorte, V.J., Nelson, M.C., Nakajima, T., Schulman, I.G., Juguilon, H., Montminy, M. and Evans, R.M. Role of CBP/p300 in nuclear receptor signalling. Nature 1996; 383: 99–103PubMedCrossRefGoogle Scholar
  35. Chang, C, Kokontis, J. and Liao, S. Molecular cloning of the human and rat complementary DNA encoding androgen receptors. Science 1988a; 240: 324–326PubMedCrossRefGoogle Scholar
  36. Chang, C, Kokontis, J. and Liao, S. Structural analysis of complementary DNA and amino acid sequences of the human and rat androgen receptors. Proc. Natl. Acad. Sci. USA 1988b; 85: 7211–7215PubMedCrossRefGoogle Scholar
  37. Chang, K.H., Chen, Y., Chen, T.T., Chou, W.H., Chen, P.L., Ma, Y.Y., Yang-Feng, T.L., Leng, X., Tsai, M.-J. and O’Malley, B.W. A thyroid hormone receptor coactivator negatively regulated by the retinoblastoma protein. Proc. Natl. Acad. Sci. USA 1997; 94: 9040–9045PubMedCrossRefGoogle Scholar
  38. Chen, D., Ma, H., Hong, H., Koh, S.S., Huang, S.M., Schurter, B.T., Aswad, D.W. and Stallcup, M.R. Regulation of transcription by a protein methyltransferase. Science 1999a; 284: 2174–2177PubMedCrossRefGoogle Scholar
  39. Chen, H., Lin, R.J., Schiltz, R.L., Chakravarti, D., Nash, A., Nagy, L., Privalsky, M.L., Nakatani, Y. and Evans, R.M. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with p/CAF and CBP/p300. Cell 1997; 90: 569–580PubMedCrossRefGoogle Scholar
  40. Chen, H., Lin, R.J., Xie, W., Wilpitz, D. and Evans, R.M. Regulation of hormone-induced hyperacetylation and gene activation via acetylation of an acetylase. Cell 1999b; 98: 675–686PubMedCrossRefGoogle Scholar
  41. Chen, T., Wang, L.H. and Farrar, W.L. Interleukin 6 activates androgen receptor mediated gene expression through a signal transducer and activator of transcription 3- dependent pathway in LNCaP prostate cancer cells. Cancer Res. 2000; 60: 2132–2135PubMedGoogle Scholar
  42. Chen, Y., Chen, P.-L., Chen, C.-F., Sharp, Z.D. and Lee, W.-H. Thyroid hormone, T3- dependent phosphorylation and translocation of TRIP230 from the Golgi complex to the nucleus. Proc. Natl. Acad. Sci. USA 1999c; 96: 4443–4448PubMedCrossRefGoogle Scholar
  43. Cho, H., Orphanides, G., Sun, X., Yang, X.J., Ogryzko, V., Lees, E., Nakatani, Y. and Reinberg, D. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 1998; 18: 5355–5363PubMedGoogle Scholar
  44. Chung, CD., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P. and Shuai, K. Specific inhibition of STAT3 signal transduction by PIAS3. Science 1997; 278: 1803–1805PubMedCrossRefGoogle Scholar
  45. Ciechanover, A., Orian, A. and Schwartz, A.L. The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J. Cell. Biochem. Suppl. 2000; 34: 40–51PubMedCrossRefGoogle Scholar
  46. Cooke, P.S., Young, P. and Cunha, G.R. Androgen receptor expression in developing male reproductive organs. Endocrinology 1997; 128: 2867–2873CrossRefGoogle Scholar
  47. Cosma, M.P., Tanaka, T. and Nasmyth, K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle and developmentally regulated promoter. Cell 1999; 97: 299–311PubMedCrossRefGoogle Scholar
  48. Cui, J.Q., Wang, H., Reddy, E.S. and Rao, V.N. Differential transcriptional activation by the N-terminal region of BRCA1 splice variants BRCAla and BRCAlb. Oncol. Rep. 1998; 5: 585–589PubMedGoogle Scholar
  49. Cunningham, C.C., Stossel, T.P. and Kwiatkowski, D.J. Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin. Science 1991; 251: 1233–1236PubMedCrossRefGoogle Scholar
  50. Daniellian, P.S., White, R., Lees, J.A. and Parker, M.G. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 1992; 11: 1025–1033Google Scholar
  51. Darimont, B.D., Wagner, R.L., Apriletti, J.W., Stallcup, M.R., Kushner, P.J., Baxter, J.D., Fletterick, R.J. and Yamamoto, K.R. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 1998; 12: 3343–3356PubMedCrossRefGoogle Scholar
  52. Davie, J.R. and Spencer, V.A. Control of histone modifications. J. Cell. Biochem. Suppl. 1999; 32/33: 141–148CrossRefGoogle Scholar
  53. De Bellis, A., Quigley, C.A., Marschke, K.B., El-Awady, M., Lane, M.V., Smith, E.P., Sar, M., Wilson, E.M. and French, F.S. Characterization of mutant androgen receptors causing partial androgen insensitivity syndrome. J. Clin. Endocrinol. Metab. 1994; 78: 513–522PubMedCrossRefGoogle Scholar
  54. Dedhar, S., Rennie, P.S., Shago, M., Hagesteijn, C.Y.L., Yang, H., Filmus, J., Hawley, R.G., Bruchovsky, N., Cheng, H., Matusik, R.J. and Giguere, V. Inhibition of nuclear hormone receptor activity by calreticulin. Nature 1994; 367: 480–483PubMedCrossRefGoogle Scholar
  55. Di Cristofano, A. and Pandolfi, P.P. The multiple roles of PTEN in tumor suppression. Cell 2000; 100: 387–390PubMedCrossRefGoogle Scholar
  56. Djakiew, D. Dysregulated expression of growth factors and their receptors in the development of prostate cancer. Prostate 2000; 42: 150–160PubMedCrossRefGoogle Scholar
  57. Durand, B., Saunders, M., Gaudon, C, Roy, B., Losson, R. and Chambon, P. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and the influence of the nature of the response element on AF-2 activity. EMBO J. 1994; 13: 5370–5382PubMedGoogle Scholar
  58. Ellwood, K.B., Yen, Y.-M., Johnson, R.C. and Carey, M. Mechanism for specificity by HMG-1 in enhansosome assembly. Mol. Cell. Biol. 2000; 20: 4359–4370PubMedCrossRefGoogle Scholar
  59. Fang, Y., Fliss, A.E., Robins, D.M. and Caplan, A.J. Hsp90 regulates androgen receptor hormone binding affinity in vivo. J. Biol. Chem. 1996; 271: 28697–28702PubMedCrossRefGoogle Scholar
  60. Fedele, M., Benvenuto, G., Pero, R., Majello, B., Battista, S., Lembo, F., Vollono, E., Day, P.M., Santoro, M., Lania, L., Bruni, C.B., Fusco, A. and Chiariotti, L. A novel member of the BTB/POZ family, PATZ, associates with the RNF4 RING finger protein and acts as a transcriptional repressor. J. Biol. Chem. 2000; 275: 7894–7901PubMedCrossRefGoogle Scholar
  61. Fondell, J.D., Ge, H. and Roeder, R.G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl. Acad. Sci. USA 1996; 93: 8329–8333PubMedCrossRefGoogle Scholar
  62. Fondell, J.D., Guermah, M., Malik, S. and Roeder, R.G. Thyroid hormone receptor associated proteins and general positive cofactors mediate thyroid hormone receptor function in the absence of the TATA box binding protein associated factors of TFIID. Proc. Natl. Acad. Sci. USA 1999; 96: 1959–1964PubMedCrossRefGoogle Scholar
  63. Font de Mora, J. and Brown, M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol. Cell. Biol. 2000; 20: 5041–5047PubMedCrossRefGoogle Scholar
  64. Freedman, L.P. Increasing the complexity of coactivation in nuclear receptor signaling. Cell 1999a; 97: 5–8PubMedCrossRefGoogle Scholar
  65. Freedman, L.P. Strategies for transcriptional activation by steroid/nuclear receptors. J. Cell. Biochem. (Suppl.) 1999b; 32/33: 103–109CrossRefGoogle Scholar
  66. Froesch, B.A., Takayama, S. and Reed, J.C. BAG-1L protein enhances androgen receptor function. J. Biol. Chem. 1998; 273: 11660–11666PubMedCrossRefGoogle Scholar
  67. Fronsdal, K., Engedal, N., Slagsvold, T. and Saatcioglu, F. CREB binding protein is a coactivator for the androgen receptor that mediates cross-talk with AP-1. J. Biol. Chem. 1998; 273: 31853–31859PubMedCrossRefGoogle Scholar
  68. Fujimoto, N., Yeh, S., Kang, H., Inui, S., Chang, H.C., Mizokami, A. and Chang, C. Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J. Biol. Chem. 1999; 274: 8316–8321PubMedCrossRefGoogle Scholar
  69. Furukawa, K., Fu, W., Li, Y., Witke, W., Kwiatkowski, D.J. and Mattson, M.P. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J. Neurosci. 1997; 17: 8178–8186PubMedGoogle Scholar
  70. Ganjam, V.K. and Amann, R.P. Steroids in fluids and sperm entering and leaving the bovine epididymis, epididymal tissue, and accessory sex gland secretions. Endocrinology 1976; 99: 1618–1630PubMedCrossRefGoogle Scholar
  71. Gao, T., Brantley, K., Bolu, E. and McPhaul, M.J. RFG (ARA70, ELE1) interacts with the human androgen receptor in a ligand dependent fashion, but functions only weakly as a coactivator in cotransfection assays. Mol. Endocrinol. 1999; 13: 1645–1656PubMedCrossRefGoogle Scholar
  72. Gee, A.C., Carlson, K.E., Martini, P.G.V., Katenellenbogen, B.S. and Katzenellenbogen, J.A. Coactivator peptides have a differential stabilizing effect on binding of estrogens and antiestrogens with the estrogen receptor. Mol. Endocrinol. 1999; 13: 1912–1923PubMedCrossRefGoogle Scholar
  73. Ghadessy, F.J., Lim, J., Abdullah, A.A.R., Panet-Raymond, V., Choo, C.K., Lumbroso, R., Tut, T.G., Gottlieb, B., Pinsky, L., Trifiro, M.A. and Yong, E.L. Oligospermic infertility associated with an androgen receptor mutation that disrupts interdomain and coactivator (TIF2) interactions. J. Clin. Invest. 1999; 103: 1517–1525PubMedCrossRefGoogle Scholar
  74. Glass, C.K. and Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000; 14: 121–141PubMedGoogle Scholar
  75. Gnessi, L., Fabbri, A. and Spera, G. Gonadal pepetides as mediators of development and functional control in the testis: an integrated system with hormones and local environment. Endocr. Rev. 1997; 18: 541–609PubMedCrossRefGoogle Scholar
  76. Gorlich, D. and Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 1999; 15: 607–660PubMedCrossRefGoogle Scholar
  77. Gottlieb, B., Beitel, L.E. and Trifiro, M.A. Variable expressivity and mutation databases: the androgen receptor gene mutations database. Hum. Mutat. 2001; 17: 382–388PubMedCrossRefGoogle Scholar
  78. Gottlieb, B., Vasiliou, D.M., Lumbroso, R., Beitel, L.K., Pinsky, L. and Trifiro, M.A. Analysis of exon 1 mutations in the androgen receptor. Human Mutat. 1999; 14: 527–539CrossRefGoogle Scholar
  79. Gregory, C.W., Hamil, K.G., Kim, D., Hall, S.H., Pretlow, T.G., Mohler, J.L. and French, F.S. Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res. 1998; 58: 5718–5724PubMedGoogle Scholar
  80. Gregory, C.W., He, B., Johnson, R.T., Ford, O.H., Mohler, J.L., French, F.S. and Wilson, E.M. A mechanism for androgen receptor mediated prostate cancer after androgen deprivation therapy. Cancer Res. 2001; 61: 4315–4319PubMedGoogle Scholar
  81. Gu, W. and Roeder, R.G. Activation of p53 sequence specific binding by acetylation of the p53 C-terminal domain. Cell 1997; 90: 595–606PubMedCrossRefGoogle Scholar
  82. Gumbiner, B.M. Signal transduction by beta catenin. Curr. Opin. Cell Biol. 1995; 7: 634–640PubMedCrossRefGoogle Scholar
  83. Halachmi, S., Marden, E., Martin, G., MacKay, H., Abbondanza, C. and Brown, M. Estrogen receptor associated proteins: possible mediators of hormone induced transcription. Science 1994; 264: 1455–1458PubMedCrossRefGoogle Scholar
  84. Hammer, G.D., Krylova, I., Zhang, Y., Darimont, B.D., Simpson, K., Weigal, N.L. and Ingram, H.A. Phosphorylation of the nuclear receptor SF-1 modulates cofactor recruitment: integration of hormone signaling in reproduction and stress. Molecular Cell 1999; 3: 521–526PubMedCrossRefGoogle Scholar
  85. Han, G., Foster, B.A., Mistry, S., Buchanan, G., Harris, J.M., Tilley, W.D. and Greenberg, N.M. Hormone status selects for spontaneous androgen receptor variants that demonstrate specific ligand and cofactor dependent activities in autochthonous prostate cancer. J. Biol. Chem. 2001; 276: 11204–11213PubMedCrossRefGoogle Scholar
  86. Hardy, D.O., Scher, H.I., Bogenreider, T., Sabbatini, P., Zhang, Z., Nanus, D.M. and Catterall, J.F. Androgen receptor CAG repeat lengths in prostate cancer: correlation with age of onset. J. Clin. Endocrinol. Metab. 1996; 81: 4400–4405PubMedCrossRefGoogle Scholar
  87. Hayes, S.A., Zarnegar, M., Sharma, M., Yang, F., Peehl, D.M., ten Dijke, P. and Sun, Z. Smad 3 represses androgen-receptor mediated transcription. Cancer Res. 2001; 61: 2112–2118PubMedGoogle Scholar
  88. He, B., Kemppainen, J.A., Voegel, J.J., Gronemeyer, H. and Wilson, E.M. Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH2-terminal domain. J. Biol. Chem. 1999; 274: 37219–37225PubMedCrossRefGoogle Scholar
  89. He, B., Kemppainen, J.A. and Wilson, E.M. FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J. Biol. Chem. 2000; 275: 22986–22994PubMedCrossRefGoogle Scholar
  90. He, B., Minges, J.T., Lee, L.W. and Wilson, E.M. The FXXLF motif mediates androgen receptor-specific interactions with coregulators. J. Biol. Chem. 2002; E-publicationGoogle Scholar
  91. Heery, D.M., Kalkhoven, E., Hoare, S. and Parker, M.G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997; 387: 733–736PubMedCrossRefGoogle Scholar
  92. Heinlein, C.A. and Chang, C. Role of chaperones in nuclear translocation and transactivation of steroid receptors. Endocrine 2001; 14: 143–149PubMedCrossRefGoogle Scholar
  93. Heinlein, C.A. and Chang, C. Androgen Receptor (AR) Coregulators: An Overview. Endocr. Rev. 2002; 23: 175–200PubMedCrossRefGoogle Scholar
  94. Heinlein, C.A., Ting, H., Yeh, S. and Chang, C. Identification of ARA70 as a ligand enhanced coactivator for the Peroxisome, Proliferator-activated Receptor gamma. J. Biol. Chem. 1999; 274: 16147–16152PubMedCrossRefGoogle Scholar
  95. Heinzel, T., Lavinsky, R.M., Mullen, T.M., Soderstrom, M., Laherty, CD., Torchia, J., Yang, W.M., Brard, G., Ngo, S.D., Davie, J.R., Seto, E., Eisenman, R.N., Rose, D.W., Glass, C.K. and Rosenfeld, M.G. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 1997; 387: 43–48PubMedCrossRefGoogle Scholar
  96. Hong, H., Kohli, K., Garabedian, M.J. and Stallcup, M.R. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell. Biol. 1997; 17: 2735–2744PubMedGoogle Scholar
  97. Horlein, A.J., Naar, A.M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., Soderstrom, M., Glass, C.K. and Rosenfeld, M.G. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377: 397–403PubMedCrossRefGoogle Scholar
  98. Hsiao, P.W. and Chang, C. Isolation and characterization of ARA160 as the first androgen receptor N-terminal-associated coactivator in human prostate cells. J. Biol. Chem. 1999; 274: 22373–22379PubMedCrossRefGoogle Scholar
  99. Hsiao, P.W., Lin, D., Nakao, R. and Chang, C. The linkage of Kennedy’s Neuron Disease to ARA24, the first identified androgen receptor polyglutamine region-associated coactivator. J. Biol. Chem. 1999; 274: 20229–20234PubMedCrossRefGoogle Scholar
  100. Hu, X. and Lazar, M.A. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 1999; 402: 93–96PubMedCrossRefGoogle Scholar
  101. Huang, N., vom Baur, E., Gamier, J.-M., Lerouge, T., Vonesch, J.-L., Lutz, Y., Chambon, P. and Losson, R. Two distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators. EMBOJ. 1998; 17: 3398–3412CrossRefGoogle Scholar
  102. Huang, S.M. and Stallcup, M.R. Mouse ZacI, a transcriptional coactivator and repressor for nuclear receptors. Mol. Cell. Biol. 2000; 20: 1855–1867PubMedCrossRefGoogle Scholar
  103. Huggins, C, Stevens, R.E. and Hodges, C.V. Studies on prostate cancer. Arch. Surg. 1943; 43:209–223CrossRefGoogle Scholar
  104. Huibregste, J.M., Scheffner, M., Beaudenon, S. and Howley, P.M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 1995; 92: 2563–2567CrossRefGoogle Scholar
  105. Ichinose, H., Gamier, J.M., Chambon, P. and Losson, R. Ligand-dependent interaction between the estrogen receptor and the human homologues of SWI2/SNF2. Gene 1997; 188: 95–100PubMedCrossRefGoogle Scholar
  106. Iizuka, M. and Stillman, B. Histone acetyltransferase HBOl interacts with the ORC1 subunit of the human initiator protein. J. Biol. Chem. 1999; 274: 23027–23034PubMedCrossRefGoogle Scholar
  107. Ikonen, T., Palvimo, J.J. and Janne, O.A. Interaction between the amino and carboxyl terminal regions of rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. J. Biol. Chem. 1997; 272: 29821–29828PubMedCrossRefGoogle Scholar
  108. Imhof, A., Yang, X., Ogryzko, V.V., Nakatani, Y., Wolffe, A.P. and Ge, H. Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. 1997; 7: 689–692PubMedCrossRefGoogle Scholar
  109. Ito, K., Adachi, S., Iwakami, R., Yasuda, H., Muto, Y., Seki, N. and Okano, Y. N-terminally extended human ubitquitin -conjugating enzymes (E2s) mediate the ubiquitination of RING-finger proteins ARA54 and RNF8. Eur. J. Biochem. 2001; 268: 2725–2732PubMedCrossRefGoogle Scholar
  110. Jackson, T.A., Richer, J.K., Bain, D.L., Takimoto, G.S., Tung, L. and Horwitz, K.B. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the co-repressors N-CoR and SMRT. Mol. Endocrinol. 1997; 11: 693–705PubMedCrossRefGoogle Scholar
  111. Jacq, X., Brou, C, Lutz, Y., Davidson, I., Chambon, P. and Tora, L. Human TAFII30 is present in a distinct TFIID complex required for transcriptional activation by the estrogen receptor. Cell 1994; 79: 107–117PubMedCrossRefGoogle Scholar
  112. Janmay, P.A. and Stossel, T.P. Modulation of gelsolin by phosphatidylinositol 4,5-bisphosphate. Nature 1987; 325: 362–364CrossRefGoogle Scholar
  113. Jenster, G., Spencer, T.E., Burcin, M.M., Tsai, S.Y., Tsai, M.J. and O’Malley, B.W. Steroid receptor induction of transcription: a two step model. Proc. Natl. Acad. Sci. USA 1997; 94: 7879–7884PubMedCrossRefGoogle Scholar
  114. Jenster, G., van der Korput, H.A.G.M., Trapman, J. and Brinkman, A.O. Identification of two transcription activation units in the N-terminal domain of the human androgen receptor. J. Biol. Chem. 1995; 270: 7341–7346PubMedCrossRefGoogle Scholar
  115. Jenster, G., van der Korput, H.A.G.M., van Vroonhoven, C, van der Kwast, T.H., Trapman, J. and Brinkman, A.O. Domains of the androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol. Endocrinol. 1991; 5: 1396–1404PubMedCrossRefGoogle Scholar
  116. Jones, J.L., Royall, J.E. and Critchley, D.R. Modulation of myoepithelial associated ct6P4 integrin in a breast cancer cell line alters invasive potential. Exp. Cell Res. 1997; 235: 325–333PubMedCrossRefGoogle Scholar
  117. Jones, J.L. and Walker, R.A. Integrins: a role as cell signalling molecules. Mol. Pathol. 1999; 52: 208–213PubMedCrossRefGoogle Scholar
  118. Kahana, J.A. and Cleveland, D.W. Beyond nuclear transport: Ran-GTP as a determinant of spindle assembly. J. Cell Biol. 1999; 146: 1205–1209PubMedCrossRefGoogle Scholar
  119. Kalkhoven, E., Valentine, J.E., Heery, D.M. and Parker, M.G. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J 1998; 17: 232–243PubMedCrossRefGoogle Scholar
  120. Kamei, Y., et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 1996; 85: 403–414PubMedCrossRefGoogle Scholar
  121. Kamimura, S., Gallieni, M, Zhong, M, Beron, W., Slatopolsky, E. and Dusso, A. Microtubules mediate cellular 25-hydroxyvitamin D3 trafficking and the genomic response to 1,25-dihydroxyvitamin D3 in human monocytes. J. Biol. Chem. 1995; 270: 22160–22166PubMedCrossRefGoogle Scholar
  122. Kang, H.-Y., Lin, H.-K., Hu, Y.-C, Yeh, S., Huang, K.-E. and Chang, C. From transforming growth factor beta signaling to androgen action: identification of Smad 3 as an androgen receptor coregualtor in prostate cancer cells. Proc. Natl. Acad. Sci. USA 2001; 98: 3018–3023PubMedCrossRefGoogle Scholar
  123. Kang, H.-Y., Yeh, S., Fujimoto, N. and Chang, C. Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with the androgen receptor. J. Biol. Chem. 1999; 274: 8570–8576PubMedCrossRefGoogle Scholar
  124. Kazemi-Esfarjani, P., Trifiro, M.A. and Pinsky, L. Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the (CAG)n-expanded neuronopathies. Hum. Mol. Genet. 1995; 4: 523–527PubMedCrossRefGoogle Scholar
  125. Keller, E.T., Ershler, W.B. and Chang, C. The androgen receptor: a mediator of diverse responses. Front. Biosci. 1996; 1: d59–71Google Scholar
  126. Kim, H.J., J.Y., Y., Sung, H.S., Moore, D.D., Jhun, B.H., Lee, Y.C. and Lee, J.W. Activating signal cointegrator 1, a novel transcription coactivator of nuclear receptors, and its cytosolic localization under conditions of serum disruption. Mol. Cell. Biol. 1999; 19: 6323–6332PubMedGoogle Scholar
  127. Kim, M.Y., Hsiao, S.J. and Kraus, W.L. A role for coactivators and histone acetylation in estrogen receptor alpha mediated transcription initiation. EMBO J. 2001; 20: 6084–6094PubMedCrossRefGoogle Scholar
  128. Kimura, N., Mizokami, A., Oonuma, T., Sasano, H. and Nagura, H. Immunocytochemical localization of androgen receptor with polyclonal antibody in paraffin-embedded human tissues. J. Histochem. Cytochem. 1993; 41: 671–678PubMedCrossRefGoogle Scholar
  129. Knudsen, K.E., Cavenee, W.K. and Arden, K.C. D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res. 1999; 59: 2297–2301PubMedGoogle Scholar
  130. Knutti, D., Kaul, A. and Kralli, A. A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol. Cell. Biol. 2000; 20: 2411–2422PubMedCrossRefGoogle Scholar
  131. Kornberg, R.D. and Lorch, Y. Chromatin-modifying and -remodeling complexes. Curr. Opin. Genet. Dev. 1999; 9: 148–151PubMedCrossRefGoogle Scholar
  132. Korzus, E., Torchia, J., Rose, D.W., Xu, L., Kurokawa, R., Mclnerney, E.M., Mullen, T.M., Glass, C.K. and Rosenfeld, M.G. Transcription factor specific requirements for coactivators and their acetylase functions. Science 1998; 279: 703–707PubMedCrossRefGoogle Scholar
  133. Kothakota, S., Azuma, T., Reinhard, C, Klippel, A., Tang, J., Chu, K., Mcgarry, T.J., Kirschner, M.W., Koths, K., Kwiatkowski, D.J. and Williams, L.T. Caspase-3 generated fragment of gelsolin: effector of morpholgical change in apoptosis. Science 1997; 178: 294–298CrossRefGoogle Scholar
  134. Krebs, J.E., Kuo, M.H., Allis, CD. and Peterson, C.L. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev. 1999; 13: 1412–1421PubMedCrossRefGoogle Scholar
  135. Kuhl, M., Sheldahl, L.C., Park, M., Miller, J.R. and Moon, R.T. The Wnt/Ca2+ pathway: a new vertebrate signaling pathway takes shape. Trends Genet. 2000; 16: 279–283PubMedCrossRefGoogle Scholar
  136. Kuiper, G.G.J.M., de Ruiter, P.E., TRapman, J., Boersma, W.J.A., Grootegoed, J.A. and Brinkman, A.O. Localization and hormonal stimulation of phosphorylation sites in the LNCaP cell androgen receptor. Biochem. J. 1993; 291: 95–101Google Scholar
  137. Kupfer, S.R., Marschke, K.B., Wilson, E.M. and French, F.S. Receptor accessory factor enhances specific DNA binding of androgen and glucocorticoid receptors. J. Biol. Chem. 1993; 268: 17519–17527PubMedGoogle Scholar
  138. Kupfer, S.R., Wilson, E.M. and French, F.S. Androgen and glucocorticoid receptors interaction with insulin degrading enzyme. J. Biol. Chem. 1994; 269: 20622–20628PubMedGoogle Scholar
  139. Kutay, U., Bischoff, F.R., Kostka, S., Kraft, R. and Gorlich, D. Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 1997; 90: 1061–1071PubMedCrossRefGoogle Scholar
  140. Kwok, B.P., Lunbald, J.R., Chrivia, J.C., Richards, J.R, Bachinger, H.P., Brennan, R.G., Roberts, S.G., Green, M.R. and Goodman, R.H. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 1994; 370: 223–226PubMedCrossRefGoogle Scholar
  141. La Spada, A., Wilson, E.M., Lubahn, D.B., Harding, A.E. and Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352: 77–79PubMedCrossRefGoogle Scholar
  142. Lanz, R.B., McKenna, N.J., Onate, S.A., Albrecht, U., Wong, J., Tsai, S.Y., Tsai, M.-J. and O’Malley, B.W. A steroid receptor coactivator,SRA, functions as an RNA and is present in an SRC-1 complex. Cell 1999; 97: 17–27PubMedCrossRefGoogle Scholar
  143. Lavinsky, R.M., Jepsen, K., Heinzel, T., Torchia, J., Mullen, T.M., Schiff, R., Del-Rio, A.L., Ricote, M., Ngo, S., Gemsch, J., Hilsenbeck, S.G., Osborne, C.K., Glass, C.K. and Rosenfeld, M.G. Diverse signaling pathways modulate nuclear receptor recruitment of NCoR and SMRT complexes. Proc. Natl. Acad. Sci. USA 1998; 95: 2920–2925PubMedCrossRefGoogle Scholar
  144. Lee, D.K., Duan, H.O. and Chang, C. From androgen receptor to the general transcription factor TFIIH: identification of cdk activating kinase (CAK) as an androgen receptor NH2-terminal associated coactivator. J. Biol. Chem. 2000; 275: 9308–9313PubMedCrossRefGoogle Scholar
  145. Leers, J., Treuter, E. and Gustafsson, J.A. Mechanistic principles in NR box-dependent interaction between nuclear hormone receptors and the coactivator TIF2. Mol. Cell. Biol. 1998; 18: 6001–3013PubMedGoogle Scholar
  146. Lemon, B. and Tjian, R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 2000; 14: 2551–2569PubMedCrossRefGoogle Scholar
  147. Li, H., Gomes, P.J. and Chen, J.D. Rac3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc. Natl. Acad. Sci. USA 1997a; 1997: 8479–8484CrossRefGoogle Scholar
  148. Li, J., Yen, C, Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J., Miliaresis, C, Rodgers, L., McMombie, R., Bigner, S.H., Giovanella, B.C., Ittman, M., Tycko, B., Hibshoosh, H., Wignler, M.H. and Parsons, R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997b; 275: 1943–1947PubMedCrossRefGoogle Scholar
  149. Li, P., Nicosia, S.V. and Bai, W. Antagonism between PTEN/MMAC1/ TEP-1 and androgen receptor in growth and apoptosis of prostatic cancer cells. J. Biol. Chem. 2001; 276: 20444–20450PubMedCrossRefGoogle Scholar
  150. Lin, H.-K., Yeh, S., Kang, H.-Y. and Chang, C. Akt supresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl. Acad. Sci. USA 2001; 98: 7200–7205PubMedCrossRefGoogle Scholar
  151. Liu, B., Liao, J., Rao, X., Kushner, S.A., Chung, C.D. and Chang, D.D. Inhibition of STAT1- mediated gene activation by PIAS1. Proc. Natl. Acad. Sci. USA 1998a; 95: 10626–10631PubMedCrossRefGoogle Scholar
  152. Liu, Y., Chrivia, J.C. and Latchman, D.S. Nerve growth factor up-regulates the transcriptional activity of CBP through activation of the p42/p44 MAPK cascade. J. Biol. Chem. 1998b; 273: 32400–32407PubMedCrossRefGoogle Scholar
  153. Lu, J. and Danielsen, M. Differential regulation of androgen and glucocorticoid receptors by retinoblastoma protein. J. Biol. Chem. 1998; 273: 31528–31533PubMedCrossRefGoogle Scholar
  154. Lubahn, D.B., Joseph, D.R., Sullivan, P.M., Willard, H.F., French, F.S. and Wilson, E.M. Cloning of the human androgen receptor complementary DNA and localization to the X chromosome. Science 1988; 240: 327–330PubMedCrossRefGoogle Scholar
  155. Mak, H.Y. and Parker, M.G. Use of suppressor mutants to probe the function of estrogen receptor-pl60 coactivator interactions. Mol. Cell. Biol. 2001; 21: 4379–4390PubMedCrossRefGoogle Scholar
  156. Manning, E.T., Ikehara, T., Ito, T., Kadonaga, J.T. and Kraus, W.L. p300 forms a stable, template committed complex with chromatin: role for the bromodomain. Mol. Cell. Biol. 2001; 21: 3876–3887PubMedCrossRefGoogle Scholar
  157. Martin, M.B., Voeller, H.J., Gelman, E.P., Lu, J., Stoica, E.G., Hebert, E.J., Danielsen, M., Pentecost, E. and Stoica, A. Role of cadmium in the regulation of androgen receptor gene expression and activity. Endocrinology 2001; In pressGoogle Scholar
  158. Matias, P.M., Donner, P., Coelho, R., Thomaz, M., PEixoto, C, Macedo, S., Otto, N., Joschko, S., Scholz, P., Wegg, A., Basler, S., Schafer, M., Egner, U. and Carrondo, M.A. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. J. Biol. Chem. 2000; 275: 26164–26171PubMedCrossRefGoogle Scholar
  159. Matsuda, T., Junicho, A., Yamamoto, T., Kishi, H., Korkmaz, K., Saatcioglu, F., Fuse, H. and Muraguchi, A. Cross-talk between signal transducer and activator of transcription 3 and androgen receptor signaling in prostate carcinoma cells. Biochem. Biophys. Res. Comm. 2001; 283: 179–187PubMedCrossRefGoogle Scholar
  160. Matsuya, M., Sasaki, H., Aoto, H., Mitaka, T., Nagura, K., Ohba, T., Ishino, M., Takahashi, S., Suzuki, R. and Sasaki, T. Cell adhesion kinase beta forms a complex with a new member, hic-5, of proteins localized at focal adhesions. J. Biol. Chem. 1998; 273: 1003–1014PubMedCrossRefGoogle Scholar
  161. McEwan, I.J. and Gustafsson, J.-A. Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF. Proc. Natl. Acad. Sci. USA 1997; 94: 8485–8490PubMedCrossRefGoogle Scholar
  162. Mclnerney, E.M., Rose, D.W., Flynn, S.E., Westin, S., Mullen, T.-M., Krones, A., Inostroza, J., Torchia, J., Nolte, R.T., Assa-Munt, N., Milburn, M.V., Glass, C.K. and Rosenfeld, M.G. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 1998; 12: 3357–3368CrossRefGoogle Scholar
  163. McKenna, M.J., Nawaz, Z., Tsai, S.Y., Tsai, M.J. and O’Malley, B.W. Distinct steady-state nuclear receptor coregulator complexes exist in vivo. Proc. Natl. Acad. Sci. USA 1998; 95: 11697–11702PubMedCrossRefGoogle Scholar
  164. McKenna, N.J., Lanz, R.B. and O’Malley, B.W. Nuclear Receptor Coregulators: Cellular and Molecular Biology. Endocr. Rev. 1999; 20: 321–344PubMedCrossRefGoogle Scholar
  165. McLachlan, R.I., Wreford, N.G., O’Donnell, L., de Kretser, D.M. and Robertson, D.M. The endocrine regulation of spermatogenesis: independent roles for testosterone and FSH. J. Endocrinol. 1996; 148: 1–9PubMedCrossRefGoogle Scholar
  166. Mengus, G., May, M., Carre, L., Chambon, P. and Davidson, I. Human TAFII135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells. Genes Dev. 1997; 11Google Scholar
  167. Meyer, M.E., Gronemeyer, H., Turcotte, B., Bocquel, M.T., Tasset, D. and Chambon, P. Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 1989; 57: 433–442PubMedCrossRefGoogle Scholar
  168. Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P.A., Harshman, K., Tavtigian, S., Liu, Q., Cochran, C, Bennett, L.M., Ding, W. and al., e. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266: 66–71PubMedCrossRefGoogle Scholar
  169. Miyamoto, H., Rahman, M., Takatera, H., Kang, H.-Y., Yeh, S., Chang, H.-C, Nishimura, K., Fujimoto, N. and Chang, C. A dominant-negative mutant of androgen receptor coregulator ARA54 inhibits androgen receptor mediated prostate cancer growth. J. Biol. Chem. 2002; 277: 4609–4317PubMedCrossRefGoogle Scholar
  170. Miyamoto, H., Yeh, S., Lardy, H., Messing, E. and Chang, C. A5- androstenediol is a natural hormone with androgenic activity in human prostate cancer cells. Proc. Natl. Acad. Sci. USA 1998a; 95: 11083–11088CrossRefGoogle Scholar
  171. Miyamoto, H., Yeh, S., Wilding, G. and Chang, C. Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate DU145 cells. Proc. Natl. Acad. Sci. USA 1998b; 95: 7379–7384CrossRefGoogle Scholar
  172. Miyamoto, S., Teramoto, H., Gutkind, J.S. and Yamada, K.M. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J. Cell Biol. 1996; 135:1633–1642PubMedCrossRefGoogle Scholar
  173. Moilanen, A.-M., Karonen, U., Poukka, H., Yan, W., Toppari, J., Janne, O.A. and Palvimo, J.J. A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins. J. Biol. Chem. 1999; 274: 3700–3704PubMedCrossRefGoogle Scholar
  174. Moilanen, A.-M., Karvonen, U., Poukka, H., Janne, O.A. and Palvimo, J.J. Activation of androgen receptor function by a novel nuclear protein kinase. Mol. Biol. Cell 1998a; 9: 2527–2543PubMedGoogle Scholar
  175. Moilanen, A.-M., Poukka, H., Karvonen, U., Hakli, M., Janne, O.A. and Palvimo, J.J. Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription. Mol. Cell. Biol. 1998b; 18: 5128–5139PubMedGoogle Scholar
  176. Mowszowicz, I., Lee, H.J., Chen, H.T., Mestayer, C, Portois, M.C., Cabrol, S., Mauvais- Jarvis, P. and Chang, C. A point mutation in the second zinc finger of the DNA binding domain of the androgen receptor gene causes androgen insensitivity in two siblings with receptor positive androgen resistance. Mol. Endocrinol. 1993; 7: 861–869PubMedCrossRefGoogle Scholar
  177. Muller, J.M., Isele, U., Metzger, E., Rempel, A., Moser, M., Pscherer, A., Breyer, T., Holobarsch, C, Buettner, R. and Schule, R. FHL2, a novel tissue-specific coactivator of the androgen receptor. EMBO J. 2000; 19: 359–369PubMedCrossRefGoogle Scholar
  178. Muscat, G.E.O., Burke, L.J. and Downes, M. The corepressor N-CoR and its variants RIP 13a and RIP13A1 directly interact with the basal transcription factors TFIIB, TAFII32, and TAFII70. Nucleic Acids Res. 1998; 26: 2899–2907PubMedCrossRefGoogle Scholar
  179. Nagy, L., Kao, H.-Y., Love, J.D., Li, C, Banayo, E., Gooch, J.T., Krishna, V., Chatterjee, K., Evans, R.M. and Schwabe, J.W.R. Mechanism of corepressor binding and release from nuclear hormone receptors. Genes Dev. 1999; 13: 3209–3216PubMedCrossRefGoogle Scholar
  180. Nagy, L., Kao, H.Y., Chakravarti, D., Lin, R.J., Hassig, C.A., Ayer, D.E., Schreiber, S.L. and Evans, R.M. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 1997; 89: 373–380PubMedCrossRefGoogle Scholar
  181. Nakajima, T., Uchida, C, Anderson, S.F., Parvin, J.D. and Montminy, M. Analysis of a cAMP responsive activator reveals a two component mechanism for transcriptional induction via signal-dependent factors. Genes Dev. 1997; 11: 738–747PubMedCrossRefGoogle Scholar
  182. Nawaz, Z., Lonard, D.M., Smith, C.L., Lev-Lehman, E., Tsai, S.Y., Tsai, M.-J. and O’Malley, B.W. The Angelman Syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol. Cell. Biol. 1999; 19: 1182–1189PubMedGoogle Scholar
  183. Needham, M., Raines, S., McPheat, J., Stacey, C, Ellston, J., Hoare, S. and Parker, M. Differential interaction of steroid hormone receptors with LXXLL motifs in SRC-la depends on residues flanking the motif. J. Steroid Biochem. Mol. Biol. 2000; 72: 35–46PubMedCrossRefGoogle Scholar
  184. Nessler-Menardi, C, Jotova, I., Culig, Z., Eder, I.E., Putz, T., Bartsch, G. and Klocker, H. Expression of androgen receptor coregulatory proteins in prostate cancer-stromal cell culture models. Prostate 2000; 45: 124–131PubMedCrossRefGoogle Scholar
  185. Nishiya, N., Sabe, H., Nose, K. and Shibanuma, M. The LIM domains of hic-5 protein recognize specific DNA fragments in a zinc-dependent manner in vitro. Nucleic Acids Res. 1998; 26: 4267–4273PubMedCrossRefGoogle Scholar
  186. Nolte, R.T., Wisely, G.B, Westin, S., Cobb, J.E., Lambert, M.H., Kurokawa, R., Rosenfeld, M.G., Willson, T.M., Glass, C.K. and Milburn, M.V. Ligand binding and coactivator assembly of the peroxisome proliferator-activated receptor gamma. Nature 1998; 395: 137–143PubMedCrossRefGoogle Scholar
  187. Ogryzko, V.V., Kotani, T., Zhang, X., Schiltz, R.L., Howard, T, Yang, X.J., Howard, B.H., Qin, J. and Nakatani, Y. Histone-like TAFs within the PCAF histone acetylase complex. Cell 1998; 94: 34–44CrossRefGoogle Scholar
  188. Ogryzko, V.V., Schlitz, R.L., Russanova, V., Howard, B.H. and Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996; 87: 953–959PubMedCrossRefGoogle Scholar
  189. Onate, S.A., Tsai, S.Y., Tsai, M.-J. and O’Malley, B.W. Sequence and characterization of a coactivator for the steroid receptor superfamily. Science 1995; 270: 1354–1357PubMedCrossRefGoogle Scholar
  190. Orsulic, S. and Peifer, M. An in vivo structure-function study of armadillo, the beta catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling. J. Cell Biol. 1996; 134: 1283–1300PubMedCrossRefGoogle Scholar
  191. Ozanne, D.M., Brady, M.E., Cook, S., Gaugham, L., Neal, D.E. and Robson, C.N. Androgen receptor nuclear translocation is facilitated by the f-actin cross-linking protein filamin. Mol. Endocrinol. 2000; 14: 1618–1626PubMedCrossRefGoogle Scholar
  192. Partin, A.W., Getzenberg, R.H., Carmichael, M.J., Vinivich, D., Yoo, J., Epstein, J.I. and Coffey, D.S. Nuclear matrix protein patterns in human benign prostatic hyperplasia and prostate cancer. Cancer Res. 1993; 53: 744–746PubMedGoogle Scholar
  193. Perissi, V., Staszewski, L.M., Mclnerney, E.M., Kurokawa, R., Krones, A., Rose, D.W., Lambert, M.H., Milburn, M.V., Glass, C.K. and Rosenfeld, M.G. Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev. 1999; 13: 3198–3208PubMedCrossRefGoogle Scholar
  194. Perkins, N.D., Felzien, L.K., Betts, J.C., Leung, K., Beach, D.H. and Nabel, G.J. Regulation of NFkB by cyclin-dependent kinases associated with the p300 coactivator. Science 1997; 275: 523–527PubMedCrossRefGoogle Scholar
  195. Perrot-Applanat, M., Lescop, P. and Milgrom, E. The cytoskeleton and the cellular traffic of the progesterone receptor. J. Cell Biol. 1992; 119: 337–348PubMedCrossRefGoogle Scholar
  196. Pestonjamasp, K.N., Pope, R.K., Wulfkuhle, J.D. and Luna, E.J. Supervillin (p205): a novel membrane-associated, F-actin binding protein of the villin/gelsolin superfamily. J. Cell Biol. 1997; 139: 1255–1269PubMedCrossRefGoogle Scholar
  197. Petrij, F., Giles, R.H., Dauwerse, H.G., Saris, J.J., Hennekam, R.C.M., Masuno, M., Tommerup, N., van Ommen, G.J.B., Goodman, R.H., Peters, D.J.M. and Breuning, M.H. Rubinstein- Taybi syndrome caused by mutations in the transcriptional coactivator CBP. Nature 1995; 376: 348–351PubMedCrossRefGoogle Scholar
  198. Phillips, S.M.A., Barton, CM., Lee, S.J., Morton, D.G., Wallace, D.M.A., Lemoine, N.R. and Neoptolemos, J.P. Loss of the retinoblastoma susceptability gene (RBI) is a frequent and early event in prostatic tumorigenesis. Br. J. Cancer 1994; 70: 1252–1257PubMedCrossRefGoogle Scholar
  199. Pissios, P., Tzameli, I., Kushner, P. and Moore, D.D. Dynamic stabilization of nuclear receptor ligand binding domains by hormone or corepressor binding. Mol. Cell 2000; 6: 245–235PubMedCrossRefGoogle Scholar
  200. Poukka, H., Aarnisalo, P., Karvonen, U., Palvimo, J.J. and Janne, O.A. Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J. Biol. Chem. 1999; 274: 19441–19446PubMedCrossRefGoogle Scholar
  201. Poulin, R., Baker, D. and Labrie, F. Androgens inhibit basal and estrogen-induced cell proliferation in the ZR-75-1 human breast cancer cell line. Breast Cancer Res. Treat. 1988; 12: 213–225PubMedCrossRefGoogle Scholar
  202. Prins, G.S. and Birch, L.S. The developmental pattern of androgen expression in rat prostate lobes is altered after neonatal exposure to estrogen. Endocrinology 1995; 136: 1303–1314PubMedCrossRefGoogle Scholar
  203. Puigserver, P., Wu, Z., Park, C.W., Graves, R., Wright, M. and Spiegelman, B.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92: 829–839PubMedCrossRefGoogle Scholar
  204. Quigley, C.A., De Bellis, A., Marschke, K.B., El-Awady, M.K., Wilson, E.M. and French, F.S. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr. Rev. 1995; 16: 271–321PubMedGoogle Scholar
  205. Rachez, C, Gamble, M., Chang, C.-P., Atkins, G.B., Lazar, M.A. and Freedman, L.P. The DRIP complex and SRC-1/pi60 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol. Cell. Biol. 2000; 20: 2718–2726PubMedCrossRefGoogle Scholar
  206. Rachez, C, Suldan, Z., Ward, J., Chang, C.P.B., Burakov, D., Erdjument-Bromage, H., Tempst, P. and Freedman, L.P. A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes Dev. 1998; 12: 1787–1800PubMedCrossRefGoogle Scholar
  207. Rebbeck, T.R., Kantoff, P.W., Krithivas, K., Neuhausen, S., Blackwood, M.A., Godwin, A.K., Daly, MB., Narod, S.A., Garber, J.E., Lynch, H.T., Weber, B.L. and Brown, M. Modification of BRCA1-associated breast cancer risk by the polymorphic androgen receptor CAG repeat. Am. J. Hum. Genet. 1999; 64: 1371–1377PubMedCrossRefGoogle Scholar
  208. Reifsnyder, C, Lowell, J., Clarke, A. and Pillus, L. Yeast SAS silencing genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat. Genet. 1996; 14: 42–49PubMedCrossRefGoogle Scholar
  209. Rhodes, D. The nucleosome core all wrapped up. Nature 1997; 389: 231–233PubMedCrossRefGoogle Scholar
  210. Robyr, D., Wolffe, A.P. and Wahli, W. Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol. Endocrinol. 2000; 14: 329–347PubMedCrossRefGoogle Scholar
  211. Rochette-Egly, C., Adam, S., Rossignol, M., J.M., E. and Chambon, P. Stimulation of RAR alpha activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 1997; 90: 97–107PubMedCrossRefGoogle Scholar
  212. Roderick, H.L., Campbell, A.K. and Llewellyn, D.H. Nuclear localisation of calreticulin in vivo is enhanced by its interaction with glucocorticoid receptors. FEBS Lett. 1997; 405: 181–185PubMedCrossRefGoogle Scholar
  213. Rowan, B.G., Weigel, N.L. and O’Malley, B.W. Phosphorylation of steroid receptor coactivator-1: identification of the phosphorylation sites and phosphorylation through mitogen-activated protein kinase pathway. J. Biol. Chem. 2000; 275: 4475–4483PubMedCrossRefGoogle Scholar
  214. Roy, A.K., Lavrovsky, Y., Song, C.S., Chen, S., Jung, M.H., Velu, N.K., Bi, B.Y. and Chatterjee, B. Regulation of androgen action. Vit. Horm. 1999; 55: 309–352CrossRefGoogle Scholar
  215. Rozenblatt-Rosen, O., Rozovskaia, T., Burakov, D., Sedkov, D., Sedkov, Y., Tillib, S., Blechman, J., Nakamura, T., Croce, CM., Mazo, A. and Canaani, E. The C-terminal SET domains of ALL-1 and trithorax interact with INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc. Natl. Acad. Sci. USA 1998; 95: 4152–4157PubMedCrossRefGoogle Scholar
  216. Russell, P.J., Bennett, S. and Strieker, P. Growth factor involvement in the progression of prostate cancer. Clin. Chem. 1998; 44: 705–723PubMedGoogle Scholar
  217. Sack, J.S., Kish, K.F., Wang, C, Attar, R.M., Kiefer, S.E., An, Y., Wu, G.Y., Scheffler, J.E., Salvati, M.E., Krystek, S.R., Weinmann, R. and Einspahr, H.M. Crystallographic structures of the ligand binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydroxytestosoterone. Proc. Natl. Acad. Sci. USA 2001; 98: 4904–4909PubMedCrossRefGoogle Scholar
  218. Santen, R.J. Endocrine treatment of prostate cancer. J. Clin. Endocrinol. Metab. 1992; 75: 685–689PubMedCrossRefGoogle Scholar
  219. Sato, N., Sadar, M.D., Bruchovsky, N., Saatcioglu, F., Rennie, P.S., Sato, S., Lange, P.H. and Gleave, M.E. Androgenic induction of prostate specific antigen is repressed by protein-protein interaction between the androgen receptor and AP-1/c-jun in the human prostate cancer cell line LNCaP. J. Biol. Chem. 1997; 272: 17485–17494PubMedCrossRefGoogle Scholar
  220. Schnitzler, G., Sif, S. and Kingston, R. Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 1998; 94: 17–27PubMedCrossRefGoogle Scholar
  221. Schwartz, A.L. and Ciechanover, A. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 1999; 50: 57–74PubMedCrossRefGoogle Scholar
  222. Shang, Y., Hu, X., DiRenzo, J., Lazar, M.A. and Brown, M. Cofactor dynamics and sufficiency in estrogen-receptor regulated transcription. Cell 2000; 103: 843–852PubMedCrossRefGoogle Scholar
  223. Sharma, M., Zarnegar, M., Li, X., Lim, B. and Sun, Z. Androgen receptor interacts with a novel MYST protein, HBOl. J. Biol. Chem. 2000; 275: 35200–35208CrossRefGoogle Scholar
  224. Sheckter, C.B., Matsumoto, A.M. and Bremmer, W.J. Testosterone administration inhibits gonadotropin secretion by an effect directly on the human pituitary. J. Clin. Endocrinol. Metab. 1989; 68: 397–401PubMedCrossRefGoogle Scholar
  225. Shiau, A.K., Barstad, D., Loria, P.M., Cheng, L., Kushner, P.J., Agard, D.A. and Greene, G.L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998; 95: 927–937PubMedCrossRefGoogle Scholar
  226. Shibanuma, M, Mashimo, J., Kuroki, T. and Nose, K. Characterization of the TGFbetal inducible hic-5 gene that encodes a putative novel zinc finger protein and its possible involvement in cellular senescence. J. Biol. Chem. 1994; 269: 26767–26774PubMedGoogle Scholar
  227. Shibanuma, M, Mochizuki, E., Maniwa, R., Mashimo, J.I., Nishiya, N., Imai, S.I., Takano, T., Oshimura, M. and Nose, K. Induction of senescence like phenotypes by forced expression of hic-5, which encodes a novel LIM motif protein, in immortalized fibroblasts. Mol. Cell. Biol. 1997; 17: 1224–1235PubMedGoogle Scholar
  228. Simental, J.A., Sar, M., Lane, M.V., French, F.S. and Wilson, E.M. Transcriptional activation and nuclear targeting signals of the human androgen receptor. J. Biol. Chem. 1991; 266: 510–518PubMedGoogle Scholar
  229. Spencer, T.E., Jenster, G., Burcin, M.M., Allis, CD., Zhou, J., Mizzen, C.A., McKenna, N.J., Onate, S.A., Tsai, S.Y., Tsai, M. and O’Malley, B.W. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 1997; 387: 194–198Google Scholar
  230. Stearns, M.E. and McGarvey, T.E. Prostate cancer: therapeutic, diagnostic, and basic studies. Lab. Invest. 1992; 67: 540–552PubMedGoogle Scholar
  231. Stenoien, D.L., Nye, A.C., MAncini, M.G., Patel, K., Dutertre, M, O’Malley, B.W., Smith, C.L., Belmont, A.S. and Mancini, M.A. Ligand-mediated assembly and real-time cellular dynamics of estrogen receptor alpha-coactivator complexes in living cells. Mol. Cell. Biol. 2001; 21: 4404–4412PubMedCrossRefGoogle Scholar
  232. Stossel, T.P., Chaponnier, C, Ezzell, R.M., Hartwig, J.H., Janmey, P.A., Kwiatkowski, D.J., Lind, S.E., Smith, D.B., Southwick, F.S., Yin, H.L. and Zaner, K.S. Nonmuscle actin-binding proteins. Annu. Rev. Cell Biol. 1985; 1: 353–402PubMedCrossRefGoogle Scholar
  233. Svejstrup, J.Q., Vichi, P. and Egly, J.M. The multiple roles of transcription/repair factor THIIH. Trends Biochem. Sci. 1996; 21: 346–350PubMedGoogle Scholar
  234. Takeshita, A., Yen, P.M., Misiti, S., Cardonan, G.R., Liu, Y. and Chin, W.W. Molecular cloning and properties of a full length putative thyroid hormone receptor coactivator. Endocrinology 1996; 137: 3594–3597PubMedCrossRefGoogle Scholar
  235. Tan, J., Hall, S.H., Hamil, K.G., Grossman, G., Petrusz, P., Liao, J. and French, F.S. Protein inhibitor of activated STAT-1 (signal transducer and activator of transcription 1) is a nuclear receptor coregulator expressed in human testes. Mol. Endocrinol. 2000a; 14: 14–26PubMedCrossRefGoogle Scholar
  236. Tan, J.-A., Hall, S.H., Petrusz, P. and French, F.S. Thyroid receptor activator molecule, TRAM-1, is an androgen receptor coactivator. Endocrinology 2000b; 141: 3440–3450PubMedCrossRefGoogle Scholar
  237. Tanese, N., Saluja, D., Vassallo, M.F., Chen, J.L. and Admon, A. Molecular Cloning and analysis of two subunits of the human TFIID complex: hTAFII130 and hTAFII100. Proc. Natl. Acad. Sci. USA 1996; 93: 13611–13616PubMedCrossRefGoogle Scholar
  238. Tekur, S., Lau, K.M., Burnstein, K. and Ho, S.M. Expression of RFG/ELE1 alpha/ARA70 in normal and malignant prostatic epithelial cell cultures and lines: regulation by methylation and sex steroids. Mol. Carcinog. 2001; 30: 1–13PubMedCrossRefGoogle Scholar
  239. Thomas, J.O. and Travers, A.A. HMG1 and 2, and related ‘architechural’ DNA binding proteins. Trends Biochem. Sci. 2001; 26: 167–174PubMedCrossRefGoogle Scholar
  240. Thomas, S.M., Hagel, M. and Turner, C.E. Characterization of a focal adhesion protein, Hic- 5, that shares extensive homology with paxillin. J. Cell Sci. 1999; 112: 181–190PubMedGoogle Scholar
  241. Tilley, W.D., Marcelli, M., Wilson, J.D. and McPhaul, M.J. Characterization and expression of a cDNA encoding the human androgen receptor. Proc. Natl. Acad. Sci. USA 1989; 86: 327–331PubMedCrossRefGoogle Scholar
  242. Ting, H.-J., Yeh, S., Nishimura, K. and Chang, C. Supervillin associates with androgen receptor and modulates its transcriptional activity. Proc. Natl. Acad. Sci. USA 2002; 99: 661–666PubMedCrossRefGoogle Scholar
  243. Tora, L., White, J., Brou, C, Tasset, D., Webster, N., Scheer, E. and Chambon, P. The human estrogen receptor has two independent non-acidic transcriptional activation functions. Cell 1989; 59: 477–487PubMedCrossRefGoogle Scholar
  244. Torchia, J., Rose, D.W., Inostroza, J., Kamei, Y., Westin, S., Glass, C.K. and Rosenfeld, M.G. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 1997; 387: 677–684PubMedCrossRefGoogle Scholar
  245. Trapman, J., Klaasen, P., Kuiper, G.G.J.M., van der Korput, J.A.G.M., Faber, P.W., van Rooij, H.C.J., Geurts van Kessel, A., Voorhorst, M.M., Mulder, E. and Brinkman, A.O. Cloning, structure and expression of a cDNA encoding the human androgen receptor. Biochem. Biophys. Res. Comm. 1988; 153: 241–248PubMedCrossRefGoogle Scholar
  246. Tremblay, A., Tremblay, G.B., Labrie, F. and Giguere, V. Ligand-independent recruitment of SRC-1 to Estrogen receptor (3 through phosphorylation of activation function AF-1. Mol. Cell 1999; 3: 513–519PubMedCrossRefGoogle Scholar
  247. Treuter, E., Albrektsen, T., Johansson, L., Leers, J. and Gustafsson, J.-A. A regulatory role for RIP140 nuclear receptor activation. Mol. Endocrinol. 1998; 12: 864–881PubMedCrossRefGoogle Scholar
  248. Trucia, C.I., Byers, S. and Gelmann, E.P. Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res. 2000; 60: 4709–4713Google Scholar
  249. Tsai, M.-J. and O’Malley, B.W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 1994; 63: 451–486PubMedCrossRefGoogle Scholar
  250. Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R., Korge, G. and Reuter, G. The protein encoded by the Drosophila position effect variegation suppressor gene Su(var)3–9 combines domains antagonistic regulators of homeotic gene complexes. EMBO J. 1994; 13: 3822–3831PubMedGoogle Scholar
  251. Tut, T.G., Ghadessy, F.J., Trifiro, M.A., Pinsky, L. and Yong, E.L. Long poly glutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J. Clin. Endocinol. Metab. 1997; 82: 3777–3782CrossRefGoogle Scholar
  252. Tyagi, R.K., Amazit, L., Lescop, P., Milgrom, E. and Guiochon-Mantel, A. Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and Ran guanosine triphosphate. Mol. Endocrinol. 1998; 12: 1684–1695PubMedCrossRefGoogle Scholar
  253. van der Kwast, T.H., Schalken, J., Ruizeveld de Winter, J.A., van Vronnhoven, C.C.J., Mulder, E., Boersma, W. and Trapman, J. Androgen receptors in endocrine therapy resistant human prostate cancer. Int. J. Cancer 1991; 48: 189–193PubMedCrossRefGoogle Scholar
  254. Voegel, J.J., Heine, M.J.S., Tini, M., Vivat, V., Chambon, P. and Gronemeyer, H. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediate transactivation through CBP binding-dependent and -independent pathways. EMBO J. 1998; 17: 507–519PubMedCrossRefGoogle Scholar
  255. Voegel, J.J., Heine, M.J.S., Zechel, C, Chambon, P. and Gronemeyer, H. TIF2, a 160kDa transcriptional mediator for the ligand dependent activation function AF-2 of nuclear receptors. EMBO J. 1996; 15: 3667–3675PubMedGoogle Scholar
  256. Voeller, H.J., Trucia, C.I. and Gelmann, E.P. Beta catenin mutations in human prostate cancer. Cancer Res. 1998; 58: 2520–2523PubMedGoogle Scholar
  257. Wadman, I.A., Osada, H., Grutz, G.G., Agulnick, A.D., Westphal, H., Forster, A. and Rabbitts, T.H. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TALI, E47, GATA-1, and Lbdl/NLl proteins. EMBO J. 1997; 16: 3145–3157PubMedCrossRefGoogle Scholar
  258. Wagner, B.L., Norris, J.D., Knotts, T.A., Weigel, N.L. and McDonnel, D.P. The nuclear corepressors NCoR and SMRT are key regulators of both ligand- and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol. Cell. Biol. 1998; 18: 1369–1378PubMedGoogle Scholar
  259. Wang, X., Yeh, S., Wu, G., Hsu, C.-L., Wang, L., Chiang, T., Yang, Y., Guo, Y. and Chang, C. Identification and characterization of a novel androgen receptor coregulator ARA267-alpha in prostate cancer cells. J. Biol. Chem. 2001; 276: 40417–40423PubMedCrossRefGoogle Scholar
  260. Weinberg, R.A. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–330PubMedCrossRefGoogle Scholar
  261. Weiss, R.E., Xu, J., Ning, G., Pohlenz, J., O’Malley, B.W. and Refetoff, S. Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. EMBO J. 1999; 18: 1900–1904PubMedCrossRefGoogle Scholar
  262. Welcsh, P.L., Schubert, E.L. and King, M.-C. Inherited breast cancer: an emerging picture. Clin. Genet. 1998; 54: 447–458PubMedCrossRefGoogle Scholar
  263. Willert, K. and Nusse, R. Beta-catenin: a key regulator of Wnt signaling. Curr. Opin. Genet. Dev. 1998; 8: 95–102PubMedCrossRefGoogle Scholar
  264. Witke, W., Sharpe, A.H., Hartwig, J.H., Azuma, T., Stossel, T.P. and Kwaitkowski, D.J. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 1995; 81: 41–51PubMedCrossRefGoogle Scholar
  265. Wolffe, A.P. and Pruss, D. Targeting chromatin disruption: transcription regulators that acetylate histones. Cell 1996; 84: 817–819PubMedCrossRefGoogle Scholar
  266. Wong, C, Zhou, Z., Sar, M. and Wilson, E.M. Steroid requirement for androgen receptor dimerization and DNA binding. J. Biol. Chem. 1993; 268: 19004–19012PubMedGoogle Scholar
  267. Wong, J., Shi, Y.B. and Wolffe, A.P. Determinants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: hormone regulated chromatin disruption is not sufficient for transcriptional activation. EMBO J. 1997; 16: 3158–3171PubMedCrossRefGoogle Scholar
  268. Workman, J.L. and Kingston, R.E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 1998; 67: 545–579PubMedCrossRefGoogle Scholar
  269. Wu, L., Wu, H., Sangiorgi, F., Wu, N., Bell, J.R., Lyons, G.E. and Maxson, R. Mizl, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA. Mech. Dev. 1997; 65: 3–17PubMedCrossRefGoogle Scholar
  270. Wulfkuhle, J.D., Donina, I.E., Stark, N.H., Pope, R.K., Pestonjamasp, K.N., Niswonger, M.L. and Luna, E.J. Domain analysis of supervillin, an F-actin bundling plasma membrane protein with functional nuclear localization signals. J. Cell Sci. 1999; 112: 2125–2136PubMedGoogle Scholar
  271. Xu, J., Liao, L., Ning, G., Yoshida-Komiya, H., Deng, C. and O’Malley, B.W. The steroid receptor coactivator SRC-3 (p/CIP/RAC-3/AIBl/ACTR/TRAM-l) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc. Natl. Acad. Sci. USA 2000; 97: 6379–6384PubMedCrossRefGoogle Scholar
  272. Xu, J., Qui, Y., DeMayo, F.J., Tsai, S.Y., Tsai, M.J. and O’Malley, B.W. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 1998; 279: 1922–1925PubMedCrossRefGoogle Scholar
  273. Xu, L., Glass, C.K. and Rosenfeld, M.G. Coactivator and corepressor complexes in nuclear receptor function. Curr. Opin. Genet. Dev. 1999; 9: 140–147PubMedCrossRefGoogle Scholar
  274. Xu, W., Chen, H., Du, K., Asahara, H., Tini, M., Emerson, B.M., Montiminy, M. and Evans, R.M. A transcriptional switch mediated by cofactor methylation. Science 2002; 294: 2507–2511CrossRefGoogle Scholar
  275. Yamamoto, A., Hashimoto, Y., Kohri, K., Ogata, E., Kato, S., Ikeda, K. and Nakanishi, M. Cyclin E as a coactivator of the androgen receptor. J. Cell Biol. 2000; 150: 873–879PubMedCrossRefGoogle Scholar
  276. Yang, L., Guerro, J., Hong, H., DeFranco, D.B. and Stallcup, M.R. Interaction of the tau2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, hic-5, which localizes to both focal adhesions and the nuclear matrix. Mol. Biol. Cell 2000; 11: 2007–2018PubMedGoogle Scholar
  277. Yao, T.P., Ku, G., Zhou, N., Scully, R. and Livingston, D.M. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl. Acad. Sci. USA 1996; 93: 10626–10631PubMedCrossRefGoogle Scholar
  278. Yeh, S. and Chang, C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl. Acad. Sci. U.S.A 1996; 93: 5517–5521PubMedCrossRefGoogle Scholar
  279. Yeh, S. and Chang, C. (1997) The effect of androgens and 17beta estradiol on the androgen receptor transcriptional activity in the presence of the androgen receptor coactivator ARA70 in human prostate DU145 cells. In Waites, G.M.H., Frick, J. and Baker, G.W.H. (eds.), Current Advances in Andrology. Monduzzi Editore, Bologna, pp. 17–22.Google Scholar
  280. Yeh, S., Hu, Y.C., Rahman, M, Lin, H.K., Hsu, C.L., Ting, H.J., Kang, H.Y. and Chang, C. Increase of androgen-induced cell death and androgen receptor transactivation by BRCA1 in prostate cancer cells. Proc. Natl. Acad. Sci. USA 2000; 97: 11256–11261PubMedCrossRefGoogle Scholar
  281. Yeh, S., Kang, H.-Y., Miyamoto, H., Nishimura, K., Chang, H.-C, Ting, H.-J., Rahman, ML, Lin, H.-K., Fujimoto, N., Hu, Y.-C, Mizokami, A., Huang, K.-E. and Chang, C. Differential induction of androgen receptor transactivation by different androgen receptor coactivators in human prostate DU145 cells. Endocrine 1999a; 11: 195–202PubMedCrossRefGoogle Scholar
  282. Yeh, S., Lin, H., Kang, H., Thin, T.H., Lin, M. and Chang, C. From HER2/Neu signal cascade to androgen receptor and its target coactivators: A novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc. Natl. Acad. Sci. USA 1999b; 96: 5458–5463PubMedCrossRefGoogle Scholar
  283. Yeh, S., Miyamoto, H., Nishimura, K., Kang, H., Ludlow, J., Hsiao, P.W., Wang, C, Su, C. and Chang, C. Retinoblastoma, a tumor supressor, is a coactivator for the androgen receptor in human prostate DU145 cells. Biochem. Biophys. Res. Comm. 1998a; 248: 361–367PubMedCrossRefGoogle Scholar
  284. Yeh, S., Miyamoto, H., Shima, H. and Chang, C. From estrogen to androgen receptor: a new pathway for sex hormones in the prostate. Proc. Natl. Acad. Sci. USA 1998b; 95: 5527–5532PubMedCrossRefGoogle Scholar
  285. Yin, H.L. and Stossel, T.P. Control of the cytoplasmic actin gel-sol transformation by gelsolin, a calcium dependent regulatory protein. Nature 1979; 281: 583PubMedCrossRefGoogle Scholar
  286. Yoshinaga, S.K., Peterson, C.L., Herskowitz, I. and Yamamoto, K.R. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 1992; 258:1598–1604PubMedCrossRefGoogle Scholar
  287. Zhang, J., Guenther, M.G., Carthew, R.W. and Lazar, M.A. Proteasomal regulation of nuclear receptor corepressor-mediated repression. Genes and Development 1998; 12: 1775–1780PubMedCrossRefGoogle Scholar
  288. Zhou, Z., Lane, M.V., Kemppainen, J.A., French, F.S. and Wilson, E.M. Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol. Endocrinol. 1995a; 9: 208–218PubMedCrossRefGoogle Scholar
  289. Zhou, Z.-X., He, B., Hall, S.H., Wilson, E.M. and French, F.S. Domain interactions between coregulator ARA70 and the androgen receptor (AR). Mol. Endocrinol. 2002; 16: 287–300PubMedCrossRefGoogle Scholar
  290. Zhou, Z.X., Kemppainen, J.A. and Wilson, E.M. Identification of three proline directed phosphorylation sites in the human androgen receptor. Mol. Endocrinol. 1995b; 9: 605–615PubMedCrossRefGoogle Scholar
  291. Zhu, Y., Qi, C, Jain, S., Le Beau, M.M., Espinosa, R., Atkins, G.B., Lazar, M.A., Yeldandi, A.V., Rao, M.S. and Reddy, J.K. Amplifcation and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer. Proc. Natl. Acad. Sci. USA 1999; 96: 10848–10853PubMedCrossRefGoogle Scholar
  292. Zhu, Y., Qi, C, Jia, Y., Nye, J.S., Rao, M.S. and Reddy, J.K. Deletion of PBP/PPARBP, the gene for nuclear receptor coactivator peroxisome proliferator activated receptor binding protein, results in embryonic lethality. J. Biol. Chem. 2000; 275: 14779–14782PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Cynthia A. Heinlein
    • 1
  • Erik R. Sampson
    • 1
  • Chang Chawnshang 
    • 1
  1. 1.George Whipple Lab for Cancer Research, Departments of Pathology, Urology, and Radiation OncologyUniversity of RochesterRochester

Personalised recommendations