Skip to main content

Genomic Diversity of Human Papillomaviruses and its Impact on Molecular Epidemiological Research

  • Chapter
The Molecular Epidemiology of Human Viruses
  • 269 Accesses

Abstract

Papillomas are benign epithelial neoplastic lesions, many of which are referred to as “warts” in vernacular language. Experiments that implied a viral agent as cause of papillomas date back about 100 years. For a long time, they addressed certain animal systems like the lesions in cotton tail rabbits and the common warts of humans, and the agents causing these lesions became termed “papillomaviruses” (PVs). In those times, PVs attracted little scientific attention, since these neoplasias cause only moderate public health or veterinary problems. This changed in the early 1980s, when numerous human papillomaviruses (HPVs) were found to be associated with and to cause cervical cancer and various other benign and malignant neoplastic lesions (zur Hausen, 1996). The objective of this chapter is to give a general introduction to PV biology and to discuss in some detail the state of the art of our knowledge of PV evolution and its impact on molecular epidemiology and etiology of HPV infections and HPV caused lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson A.L., Nouri M., and Steinberg B.M. 2001. Tissue site specificity, not prevalence of latent HPV6/11 infection, determines the low frequency of tracheal disease in respiratory papillomatosis. 19th International Papillomavirus Conference, Sept. 1–7, Poster 285. Florianopolis, Brazil.

    Google Scholar 

  • Antonsson A., Forslund O., Ekberg H., Sterner G., and Hansson B.G. 2000. The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalic nature of these viruses. J Virol 74:11636–11641.

    Article  PubMed  CAS  Google Scholar 

  • Antonsson A., Hazard K., Simon M., Kataoka A., and Hannson B.G. 2001. HPV prevalence and type spectrum found on normal skin of individuals from Japan and Bangladesh. 19th International Papillomavirus Conference, Sept. 1–7, Poster 308. Florianopolis, Brazil.

    Google Scholar 

  • Apple R.J., Erlich H.A., Klitz W., Manos M.M., Becker T.M., and Wheeler C.M. 1994. HLA DR-DQ associations with cervical carcinoma show papillornavirus-type specificity. Nat Genet 6:157–162.

    Article  PubMed  CAS  Google Scholar 

  • Becker T.M., Wheeler C.M., McGough N.S., Parmenter C.A, Jordan S.W., Stidley C. A McPherson R.S., and Dorin M.H. 1994. Sexually transmitted diseases and other risk factors for cervical dysplasia among southwestern Hispanic and non-Hispanic white women. JAMA 271:1181–1188.

    Article  PubMed  CAS  Google Scholar 

  • Beerheide W., Bernard H.U., Tan Y.J., Ganesan A., Rice, W.G., and Ting, A. 1999. Novel screens for potential drugs against cervical cancer identify zinc ejecting inhib itors of the HPV-16 E6 oncoprotein. J Natl Cancer Inst 91:1211–1220.

    Article  PubMed  CAS  Google Scholar 

  • Berg M. and Stenlund A. 1997. Functional interactions between papilloma virus E1 and E2 proteins. J Virol 71:3853–3863.

    PubMed  CAS  Google Scholar 

  • Bernard H.U., Chan S.Y., Manos M.M., Ong C.K., Villa L.L., Delius H., Bauer H.M., Peyton C., and Wheeler C.M. 1994. Assessment of known and novel human papillomav truses by polymerase chain reaction, restriction digest, nucleotide sequence, and phylogenetic algorithms. J Infect Dis 170:1077–1085.

    Article  PubMed  CAS  Google Scholar 

  • Bosch F.X., Castellsague X., Munoz N., de Sanjose S., Ghaffari A.M., Gonzalez L.C., Gili M., Izarzugaza I., Viladiu P., Navarro C., Vergara A., Ascunce N., Guerrero E., and Shah K.V. 1996. Male sexual behavior and human papillomavirus DNA: key risk factor for cervical cancer in Spain. J Natl Cancer Inst 88:1060–1067.

    Article  PubMed  CAS  Google Scholar 

  • Bosch F.X., Manos M.M., Munoz N., Sherman M., Jansen A.M., Peto J., Schiffman M.H., Moreno V., Kurman R., and Shah K.V. 1995. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cerv ical cancer (IBSCC) Study Group. J Natl Cancer Inst 87:796–802.

    Article  PubMed  CAS  Google Scholar 

  • Brandsma J.L., Yang Z.H., Barthold S.W., and Johnson E.A. 1991. Use of a rapid, efficient inoculat ion method to induce papillomas by cottontail rabbit papillomavirus DNA shows that the E7 gene is required. Proc Natl Acad Sci USA 88:4816–482.

    Article  PubMed  CAS  Google Scholar 

  • Chambers M.A., Stacey S.N., Arrand J.R., and Stanley M.A. 1994. Delayed-type hypersensitivity response to human papillomavirus type 16 E6 protein in a mouse model. J Gen Virol 75:165–169.

    Article  PubMed  CAS  Google Scholar 

  • Chan S.Y., Bernard H.U., Ong C.K., Chan S.P., Hofmann B., and Delius H. 1992. Phylogenetic analysis of 48 papillomavirus types and 28 subtypes and variants: A showcase for the molecular evolution of DNA viruses. J Virol 66:5714–5725.

    PubMed  CAS  Google Scholar 

  • Chan S.Y., Bernard H.U., Ratterree M., Birkebak T.A., Faras A.J., and Ostrow R. S. 1997a. Genomic diversity and evolution of papillomaviruses in Rhesus monkeys in Rhesus monkeys. J Virol 71:4938–4943.

    PubMed  CAS  Google Scholar 

  • Chan S.Y., Chew S.H., Egawa K., Grussendorf-Conen E.I., Honda Y., Ruebben A., Tan K.C., and Bernard H.U. 1997c. Phylogenetic analysis of the Human papillomavirus type 2 (HPV-2), HPV-27, and HPV-57 group, which is associated with common warts. Virology 239:296–302.

    Article  PubMed  CAS  Google Scholar 

  • Chan S.Y., Delius H., Halpern A.L., and Bernard H.U. 1995. Analys is of genomic sequences of 95 papillomavirus types: Uniting typing, phylogeny, and taxonomy. J Virol 69:3074–3083.

    PubMed  CAS  Google Scholar 

  • Chan S.Y., Ostrow R.S., Faras A.J., and Bernard H.U. 1997b. Genital papillomaviruses (PVs) and epidermodysplasia verruciformis PVs occur in the same monkey species: Implications for PV evolution. Virology 228:213–217.

    Article  PubMed  CAS  Google Scholar 

  • Chan W.K., Klock G., and Bernard H.U. 1989. Progesterone and glucocorticoid response elements occur in the long control regions of several human papillomaviruses involved in anogenital neoplasia. J Virol 63:3261–3269.

    PubMed  CAS  Google Scholar 

  • Chichareon S., Herrero R., Munoz N., Bosch F.X., Jacobs M.V., Deacon J., Santamaria M., Chongsuvivatwong V., Meijer C.J., and Walboomers J.M. 1998. Risk factors for cervical cancer in Thailand: A case control study. J Natl Cancer Inst 90:50–57.

    Article  PubMed  CAS  Google Scholar 

  • Conrad-Stöppler M.C., Ching K., Stöppler H., Clancy K., Schlegel R., and Icenogle, J. 1996. Natural variants of human papillomavirus type 16 E6 protein differ in their abilities to alter keratinocyte differentiation and to induce p53 degradation. J Virol 70:6987–6993.

    Google Scholar 

  • Cox J.T., Lorincz A.T., Schiffman M.H., Sherman M.E., Cullen A., and Kurman R.J. 1995. Human papillomavirus testing by hybrid capture appears to be useful in triaging women with a cytologic diagnosis of atypical squamous cells of undetermined significance. Am J Obstet Gynecol 172:946–954.

    Article  PubMed  CAS  Google Scholar 

  • Cullen A.P., Reid R., Campion M., and Lorincz A.T. 1991. Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm. J Virol 65:606–612.

    PubMed  CAS  Google Scholar 

  • Day P.M., Roden R.B., Lowy D.R., and Schiller J.T. 1998. The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. J Virol 72:142–15.

    PubMed  CAS  Google Scholar 

  • Daniel B., Mukherjee G., Seshadri L., Vallikad E., and Krishna S. 1995. Changes in the physical state and expression of human papillomavirus type 16 in the progression of cervical intraepithelial neoplasia lesions analysed by PCR. J Gen Virol 76:2589–2593.

    Article  PubMed  CAS  Google Scholar 

  • Deau M.C., Favre M., Jablonska S., Rueda L.A., and Orth G. 1993. Genetic heterogeneity of oncogenic human papillomavirus type 5 (HPV5) and phylogeny of HPV5 variants associated with epidermodysplasia verruciformis. J Clin Microbiol 31:2918–2926.

    PubMed  CAS  Google Scholar 

  • deVilliers E.M. 1989. Heterogeneity of the human papillomavirus group. J Virol 63:4898–4903.

    CAS  Google Scholar 

  • deVilliers E.M. 1994. Human papillomavirus types: An update. In Human pathogenic papillomaviruses, p. 1–12, Zur Hausen H., ed. Springer Verlag, Heidelberg.

    Chapter  Google Scholar 

  • deVilliers E.M. 2001. Taxonomic classification of papillomaviruses. In Papillomavirus Report 12, p. 57–63.

    Google Scholar 

  • Dollard S.C., Chow L.T., Kreider J.W., Broker T.R., Lill N.L., and Hewett M.K. 1989. Characterization of an HPV type 11 isolate propagated in human foreskin implants in nude mice. Virology 171:294297.

    Article  Google Scholar 

  • Dong X.P., Stubenrauch F., Beyer-Finkler E., and Pfister H. 1994. Prevalence of deletions ofYYI-binding sites in episomal HPV 16 DNA from cervical cancers. Int J Cancer 58:803–808.

    Article  PubMed  CAS  Google Scholar 

  • Doorbar J., Ely S., Sterling J., McLean C., and Crawford L. 1991. Specific interaction between HPV-16 EIE4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352:824–827.

    Article  PubMed  CAS  Google Scholar 

  • Ellis J.R.M., Keating P.J., Baird J., Hounsell E.F., Renouf D.V., Rowe M., Hopkins D., Duggan-Keen M.F., Bartholomew J.S., Young L.S., and Stem P.L. 1995. The association of an HPV-16 oncogene variant with HLA-B7 has implications for vaccine design in cervical cancer. Nat Med 1:464–47.

    Article  PubMed  CAS  Google Scholar 

  • Francis D.A., Schmid S.I., and Howley P.M. 2000. Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J Virol 74:2679–2688.

    Article  PubMed  CAS  Google Scholar 

  • Franco E.L., Villa L.L., Sobrinho J.P., Prado J.M. Rousseau M.C., Desy M., and Rohan T.E. 1999. Epidemiology of acquisition and clearance of cervical human papillomavirus infection in women from a high-risk area for cervical cancer. J Infect Dis 180:1415–1423.

    Article  PubMed  CAS  Google Scholar 

  • Hagensee M.E., Olson N.H., Baker T.S., and Galloway D.A 1994. Three-dimensional structure of vaccinia virus-produced human papillomavirus type I capsids. J Virol 68:4503–4505.

    PubMed  CAS  Google Scholar 

  • Heinzel P.A., Chan S.Y., Ho L., O’Connor M., Balaram P., Campo M.S., Fujinaga K., Kiviat N., Kuypers J., Pfister H., Steinberg B.M., Tay S.K., Villa L.L., and Bernard H.U. 1995. Variation of human papillomavirus type 6 (HPV-6) and HPV-11 genomes sampled throughout the world. J Clin Microb 33:1746–1754.

    CAS  Google Scholar 

  • Herrero R., Hildesheim A., Bratti C., Sherman M.E., Hutchinson M., Morales J., Balmaceda I., Greenberg M.D., Alfaro M., Burk R.D., Wacholder S., Plummer M., and Schiffman M. 2000. Populationbased study of human papillomavirus infection and cervical neoplasia in rural Costa Rica. J Natl Cancer Inst 92:464–474.

    Article  PubMed  CAS  Google Scholar 

  • Ho G.Y., Kadish A.S., Burk R.D., Basu J., Palan P.R., Mikhail M., and Romney S.L. 1998. HPV-16 and cigarette smoking as risk factors for high-grade cervical intra-epithelial neoplasia. Int J Cancer 78:281–285.

    Article  PubMed  CAS  Google Scholar 

  • Ho L., Chan S.Y., Burk R.D., Das B.C., Fujinaga K., Icenogle J.P., Kahn T., Kiviat N., Lancaster W., Mavromara P., Labropoulou V., Mitrani-Rosenbaum S., Norrild B., Pillai M.R., Stoerker J., Syrjaenen K., Syrjaenen S., Tay S.K., Villa L.L., Wheeler C.M., Williamson A.L., and Bernard H.U. 1993. The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and movement of ancient human populations. J Virol 67:6413–6414.

    PubMed  CAS  Google Scholar 

  • Ho L., Tay S.K., Chan S.H., and Bernard H.U. 1993. Sequence variants of human papillomavirus type 16 from couples suggest sexual transmission with low infectivity and polyclonality in genital neoplasia. J Infect Dis 168:803–809.

    Article  PubMed  CAS  Google Scholar 

  • Howley P.M. 1996. Papillomavirinae: The viruses and their replication. In Fields Virology, Fields B.N., Knipe D.M., and Howley P.M., eds. Lippincott-Raven, Philadelphia, USA

    Google Scholar 

  • IARC (International Agency for Research on Cancer). 1995. Monograph on the evaluation of carcinogenic risks to humans. Volume 64: Human papillomaviruses. IARC, Lyon.

    Google Scholar 

  • Jeon S., Allen-Hoffmann B.L., and Lambert P.F. 1995. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol 69:2989–2997.

    PubMed  CAS  Google Scholar 

  • Jones H.W. 1995. Impact of the Bethesda System. Cancer 76:1914–1918.

    Article  PubMed  Google Scholar 

  • Klaes R., Friedrich T., Spitkovsky D., Ridder R., Rudy W., Petry U., Dallenbach-Hellweg G., Schmidt D., and von Knebel Doeberitz M. 2001. Overexpression of p16INK4a as specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 92:276–284.

    Article  PubMed  CAS  Google Scholar 

  • Koss L.G. and Durfee G.R. 1955. Cytological changes preceding the appearance of in situ carcinoma of the uterine cervix. Cancer 8:295–301.

    Article  PubMed  CAS  Google Scholar 

  • Kjellberg L., Hallmans G., Ahren A.M., Johansson R., Bergman F., Wadell G., Angstrom T., and Dillner J. 2000. Smoking, diet, pregnancy and oral contraceptive use as risk factors for cervical intraepithelial neoplasia in relation to human papillomavirus infection. Br J Cancer 82:1332–1338.

    Article  PubMed  CAS  Google Scholar 

  • K/:uhne C. and Banks L. 1999. Cellular targets of the papillomavirus E6 protein. Papillomavirus Report 10:139–145.

    Google Scholar 

  • Liaw K.L., Glass A.G., Manos M.M., Greer C.E., Scott D.R., Sherman M., Burk R.D., Kurman R.J., Wacholder S., Rush B.B., Cadell D.M., Lawler P., Tabor D., and Schiffman M. 1999. Detection of human papillomavirus DNA in cytologically normal women and subsequent cervical squamous intraepithelial lesions. J Natl Cancer Inst 91:954–96.

    Article  PubMed  CAS  Google Scholar 

  • Manos M.M., Ting Y., Wright O.K., Lewis A.J., Broker T.R., and Wolinsky S.M. 1989. The use of polymerase chain reaction amplification for the detection of genital human papillomaviruses. Cancer Cells 7:209–214.

    CAS  Google Scholar 

  • Mant C., Cason J., Rice P., and Best J.M. 2000. Non-sexual transmission of cervical-cancer associated papillomaviruses. An update. Papillomavirus Report 11:1–5.

    Google Scholar 

  • Mattoon D., Gupta K., Doyon J., Loll P.J., and DiMaio D. 2001. Identification of the transmembrane dimer interface of the bovine papillomavirus E5 protein. Oncogene 20:3824–3834.

    Article  PubMed  CAS  Google Scholar 

  • Meyers C., Frattini M.G., Hudson J.B., and Laimins L.A. 1992. Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science 257:971–973.

    Article  PubMed  CAS  Google Scholar 

  • M/:unger K. and Phelps W.C. 1993. The human papillomavirus E7 protein as a transforming and transactivating factor. Biochim Biophys Acta 1155:111–123.

    CAS  Google Scholar 

  • Munoz N. 2000. Human papillomavirus and cancer: the epidemiological evidence. J Clin Virol 19:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Myers G., Sverdrup Baker, C., McBride A., Munger K., Bernard H.U., Meissner J. eds. Human papillomaviruses 1997 Compendium. Los Alamos National Laboratory, Los Alamos, New Mexico, USA

    Google Scholar 

  • Nasir L. and Reid S.W. 1999. Bovine papillomaviral gene expression in equine sarcoid tumours. Virus Res 61:171–175.

    Article  PubMed  CAS  Google Scholar 

  • Ngelangel C., Munoz N., Bosch F.X., Limson G.M., Festin M.R., Deacon J., Jacobs M.V., Santamaria M., Meijer C.J., Walboomers J.M. 1998. Causes of cervical cancer in the Philippines: a case-control study. J Natl Cancer Inst 90:43–49.

    Article  PubMed  CAS  Google Scholar 

  • Ong C.K., Chan S.Y., Campo M.S., Fujinaga K., Mavromara P., Labropoulou V., Pfister H., Tay S.K., ter Meulen J., Villa L.L., and Bernard H.U. 1993. Evolution of human papillomavirus type 18. An ancient phylogenetic root in Africa and intratype diversity reflect coevolution with human ethnic groups. J Virol 67:6424–6431.

    PubMed  CAS  Google Scholar 

  • Ozbun M.A. and Meyers C. 1997. Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. J Virol 71:5161–5172.

    PubMed  CAS  Google Scholar 

  • Palefsky J.M., Minkoff H., Kalish L.A., Levine A., Sacks H.S., Garcia P., Young M., Melnick S., Miotti P., and Burk R. 1999. Cervicovaginal human papillomavirus infection in human immunodeficiency virus-l (HIV-1 )-positive and high-risk HIV-negative women. J Natl Cancer Inst 91:226–236.

    Article  PubMed  CAS  Google Scholar 

  • Rapp L. and Chen J. The papillomavirus E6 proteins. 1998. Biochim Biophys Acta 1378:FI–F19.

    Google Scholar 

  • Schiffinan M.H. and Brinton L.A. 1995. The epidemiology of cervical carcinogenesis. Cancer 76:1888–1901.

    Article  Google Scholar 

  • Schwarz E., Freese U.K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., and zur Hausen H. 1985. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314:111–114.

    Article  PubMed  CAS  Google Scholar 

  • Stewart A.C., Eriksson A.M., Manos M.M., Munoz N., Bosch F.X., Peto J., and Wheeler C.M. 1996. Intratype variation in 12 human papillomavirus types: a worldwide perspective. J Virol 70:3127–3136.

    PubMed  CAS  Google Scholar 

  • St/:unkel W., Huang Z., Tan S.H., O’Connor M., and Bernard H.U. 2000. Nuclear matrix attachment regions of human papillomavirus-16 repress or activate the E6 promoter depending on the physical state of the viral DNA J Virol 74:2489–2501.

    Article  CAS  Google Scholar 

  • Svare E.I., Kjaer S.K., Smits H.L., Poll P., Tjong-A-Hung S.P., and ter Schegget J. 1998. Risk factors for HPV detection in archival Pap smears. A populations-based study from Greenland and Denmark. Eur J Cancer 34:1230–1234.

    Article  PubMed  CAS  Google Scholar 

  • Tan S.H., Leong L.E.C., Walker P.A., and Bernard H.U. 1994. The human papillomavirus type 16 transcription factor E2 binds with low cooperativity to two flanking binding sites and represses the E6 promoter through displacement of Spl and TFIID. J Virol 68:6411–642.

    PubMed  CAS  Google Scholar 

  • Van Ranst M., Kaplan J.B., and Burk R.D. 1992. Phylogenetic classification of human papillomaviruses: correlation with clinical manifestations. J Gen Virol 73:2653–266.

    Article  PubMed  Google Scholar 

  • Villa L.L., Sichero L., Rahal P., Caballero O., Ferenczy A., Rohan T., and Franco E.L. 2000. Molecular variants of human papillomavirus types 16 and 18 preferentially associated with cervical neoplasia. J Gen Virol 81:2959–2968.

    PubMed  CAS  Google Scholar 

  • Ylitalo N., Sorensen P., Josefsson A., Frisch M., Sparen P., Ponten J., Gyllensten U., Melbye M., and Adami H.O. 1995. Smoking and oral contraceptives as risk factors for cervical carcinoma in situ. Int J Cancer 81:357–365.

    Article  Google Scholar 

  • White AE, Livanos EM, Tlsty T.D. 1994. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev 8:666–767.

    Article  PubMed  CAS  Google Scholar 

  • Xi L.F., Koutsky L.A., Galloway D.A., Kuypers J., Hughes J.P., Wheeler C.M., Holmes K.K., and Kiviat N.B. 1997. Genomic variation of human papillomavirus type 16 and risk for high grade cervical intraepithelial neoplasia. J Natl Cancer Inst 89:796–802.

    Article  PubMed  CAS  Google Scholar 

  • Xi L.F., Critchlow C.W., Wheeler C.M., Koutsky L.A., Galloway D.A., Kuypers J., Hughes J.P., Hawes S.E., Surawicz C., Goldbaum G., Holmes K.K., and Kiviat N.B. Risk of anal carcinoma in situ in relation to human papillomavirus type 16 variants. Cancer Res 58:3839–3844.

    Google Scholar 

  • Yamada T., Manos M.M., Peto J., Greer C.E., Munoz N., Bosch F.X., and Wheeler C.M. 1997. Human papillomavirus type 16 sequence variation in cervical cancers: a worldwide perspective. J Virol 7:2463–2472.

    Google Scholar 

  • Zimmermann H., Koh C.H., Degenkolbe R., O’Connor M.J., Muller A., Steger G., Chen U., Liu Y., Androphy E., and Bernard H.U. 2000. Interaction with CBP/p300 Enables the Bovine Papillomavirus Type 1 E6 Oncoprotein to Downregulate CBP/p300 Mediated Transactivation by p53. J Gen Virol 81:2617–2623.

    PubMed  CAS  Google Scholar 

  • zur Hausen H. 1996. Papillomavirus infections — a major cause of human cancers. Biochim Biophys Acta 1288:F55–F76

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bernard, HU. (2002). Genomic Diversity of Human Papillomaviruses and its Impact on Molecular Epidemiological Research. In: Leitner, T. (eds) The Molecular Epidemiology of Human Viruses. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1157-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1157-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5420-8

  • Online ISBN: 978-1-4615-1157-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics