Inward and Outward Currents and Cardiac Discontinuous Conduction

  • Mary B. Wagner
  • Ronald W. Joyner
Part of the Basic Science for the Cardiologist book series (BASC, volume 12)

Abstract

In the normal heart, most of the individual cardiac cells are well coupled to adjacent cells through gap junctions. Because of this, the myocardium is referred to as an electrical syncytium such that excitation occurring at any location is able to spread throughout all parts of the heart which are not refractory to stimulation. The process of action potential propagation in the heart has generally been considered as a multi-dimensional analog of the continuous one-dimensional propagation observed in unmyelinated nerve fibers.

Keywords

Ischemia Cadmium Propa Nifedipine Washout 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Alanis, J. and D. Benitez. 1967 Transitional potentials and the propagation of impulses through different cardiac cells. In Sano, T., V. Misuhira, and K. Matsuda, eds. Electrophysiology and Ultrastructure of the Heart. Tokyo,Japan, Bunkoko Co.,Ltd.Google Scholar
  2. Alanis, J. and D. Benitez. 1970 Purkinje and transitional cells action potential and the propagation across the purkinje-ventricular junction.Jpn.J Physiol.20: 217–232PubMedCrossRefGoogle Scholar
  3. Beuckelmann, D. J., M. Nabauer, and E. Erdmann. 1993 Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure.Circulation Research.73: 379–385.PubMedCrossRefGoogle Scholar
  4. Binah, O. 1990 The transient outward current in the mammalian heart. In Rosen, M. R., M. J. Janse, and A. L. Wit, eds. Cardiac electrophysiology: a textbook. Mount Kisco, NY, Futura Press, 93–106.Google Scholar
  5. Cabo, C., H. Schmitt, and A. L. Wit. 2000 New mechanism of antiarrhythmic drugaction: increasing L-type calcium current prevents reentrant ventricular tachycardia m the mfarcted canine heart.Circulation.102: 2417–2425.PubMedCrossRefGoogle Scholar
  6. Campbell, D. L., R. L. Rasmusson, M. B. Comer, and H. C. Strauss. 1995 The cardiac calcium-independent transient outward potassium current: Kinetics, molecular properties and role in ventricular repolarization. In Zipes, D. P. and J. Jalife, eds. Cardiac electrophysiology: from cell to bedside. Philadelphia, W.B. Saunders, 83–96.Google Scholar
  7. Campbell, D. L., R. L. Rasmusson, Y. Qu, and H. C. Strauss. 1993 The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. I. Basic Characterization and kinetic analysis.J.Gen.PhysioL.101: 571–601.PubMedCrossRefGoogle Scholar
  8. Clark, R. B., W. R. Giles, and Y. Imaizumi. 1988 Properties of the transient outward current in rabbit atrial cells.J.Physiol. (London).405: 147–168.Google Scholar
  9. Escande, D., A. Coulombe, J. Faivre, E. Deroubaix, and E. Coraboeuf.(1987) Two types of transient outward currents in adult human atrial cells.Am.J Physiol..252: H142–H148.PubMedGoogle Scholar
  10. Fermini, B., Z. Wang, D. Duan, and S. Nattel. 1992 Differences in rate dependence of transient outward current in rabbit and human atrium.Am.J Physiol..263: H1747–54.PubMedGoogle Scholar
  11. Giles, W. R. and Y. Imaizumi. 1988 Comparison of potassium currents in rabbit atrial and ventricular cells.J.Physiol. (Londoll).405: 123–145.Google Scholar
  12. Hiraoka, M. and S. Kawano. 1989 Calcium-sensitive and insensitive transientoutward current in rabbit ventricular myocytes.J.Physiol.(Lond).410: 187–212Google Scholar
  13. Huelsing, D. J.., A. E. Pollard, and K. W. Spitzer. 2001 Transient outward current modulates discontinuous conduction in rabbit ventricular cell pairs.Cardiovasc.Res.49: 779–789.PubMedCrossRefGoogle Scholar
  14. Huelsing, D. J., K. W. Spitzer, J. M. Cordeiro, and A. E. Pollard. 1999 Modulation of repolarization in rabbit Purkinje and ventricular myocytes coupled by a variable resistance.Am.J Physiol..276: H572–H581.PubMedGoogle Scholar
  15. Jeck, C. D., J. M. Pinto, and P. A. Boyden. 1995 Transient outward currents in subendocardial purkinje myocytes surviving in the infarcted heart.Circulation.92: 465–473.PubMedCrossRefGoogle Scholar
  16. Joyner, R. W., R. Kumar, R. Wilders, H. J. Jongsma, E. E. Verheijck, D. A. Golod, A. C. van Ginneken, M. B. Wagner, and W. N. Goolsby. 1996 Modulating L-type calcium current affects discontinuous cardiac action potential conduction.Biophys.J..71: 237–245.PubMedCrossRefGoogle Scholar
  17. Kumar, R. and R. W. Joyner. 1995 Calcium currents of ventricular cell pairs during action potential conduction.Am.J.Physiol..268: H24764–H2486.Google Scholar
  18. Le Grand, B., S. Hatem, E. Deroubaix, J. P. Couetil, and E. Coraboeuf. 1994 Depressed transient outward and calcium currents in dilated human atria.Cardiovasc.Res..28: 548–556.PubMedCrossRefGoogle Scholar
  19. Litovsky, S. H. and C. Antzelevitch. 1988 Transient outward current prominent in canine ventricular epicardium but not endocardium.Circ.Res..62: 116–126.PubMedCrossRefGoogle Scholar
  20. Luo, C. H. and Y. Rudy. 1994 A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes.Circ.Res..74: 1071–1096.PubMedCrossRefGoogle Scholar
  21. Martinez-Palomo, A.,J. Alanis, and D. Benitez. 1970 Transitional cells of the conduction system of the dog heart.J.Cell.Biol..47: 1–17.PubMedCrossRefGoogle Scholar
  22. Mendez, C., W. J. Mueller, J. Meredith, and G. K. Moe. 1969 Interaction of transmembrane potentials in canine purkinje fibers and at purkinje fiber-muscle junctions.Circ.Res..24: 361–373.PubMedCrossRefGoogle Scholar
  23. Mendez, C., W. J. Mueller, and X. Urguiaga. 1970 Propagation of impulses acreoss the purkinje fiber-muscle junctions in the dog heart.Circ.Res..26: 135–150.PubMedCrossRefGoogle Scholar
  24. Myerburg, R. J., J. S. Cameron, N. J. Lodge, S. Kimura, N. Saoudi, P. L. Kozlovskis, and A. L. Bassett. 1985 The papillary musle preparation in a study of cardiac electrophysiology, electropharmacology, and disease models. In Zipes, D. P. and J. Jalife, eds. Cardiac electrophysiology and arrhythmias. Orlando, FL, Grune & Stratton, 225–231.Google Scholar
  25. Myerburg, R. J., K. Nilsson, and H. Gelband. 1972 Physiology of canine interventricular conduction and endocardial excitation.Circ.Res..30: 217–243.PubMedCrossRefGoogle Scholar
  26. Overholt, E. D., R. W. Joyner, R. D. Veenstra, D. Rawling, and R. Weidmann. 1984 Unidirectional block between purkinje and ventricular layers of papillary muscle.Am.J.Physiol..247: H584–H595.Google Scholar
  27. Rawling, D. A. and R. W. Joyner. 1987 Characteristics of the junctional regions between Purkinje and ventricular muscle cells of the canine ventricular subendocardium.Circ.Res..60: 580–585.PubMedCrossRefGoogle Scholar
  28. Rohr, S. and J. P. Kucera. 1997 Involvement of the calcium inward current in cardiac impulse propagation: induction of unidirectional conduction block by nifedipine and reversal by Bay K 8644.Biophys.J.72: 754–766.PubMedCrossRefGoogle Scholar
  29. Shaw, R. M. and Y. Rudy. 1997 Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling.Circ.Res..81: 727–741.PubMedCrossRefGoogle Scholar
  30. Shibata, E. F., T. Drury, H. Retsum, V. Abirete, and W. Giles. 1989 Contributions of a transient outward current to repolarization in human atrium.Am.JPhysioL.257: H1773–H1781.Google Scholar
  31. Sugiura, H. and R. W. Joyner. 1992 Action potential conduction between guinea pig ventricular cells can be modulated by calcium current.Am.J.Physiol..263: H1591–604.PubMedGoogle Scholar
  32. Tan, R. C. and R. W. Joyner. 1990 Electrotonic influences on action potentials from isolated ventricular cells.Circ.Res..67: 1071–1081.PubMedCrossRefGoogle Scholar
  33. Tomita, F., A. L. Bassett, R. J. Myerburg, and S. Kimura. 1994 Diminished transient outward currents in rat hypertrophied ventricular myocytes.Circ.Res..75: 296–303.PubMedCrossRefGoogle Scholar
  34. Tranum-Jensen, J., A. A. Wilde, J. T. Vermeulen, and M. J. Janse. 1991 Morphology of electrophysiologically identified junctions between Purkinje fibers and ventricular muscle m rabbit and pig hearts.Circ.Res..69: 429–437.PubMedCrossRefGoogle Scholar
  35. Van Wagoner, D. R., A. L. Pond, P. M. McCarthy, J. S. Trimmer, and J. M. Nerbonne. 1997 Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation.Circ.Res..80: 772–781.PubMedCrossRefGoogle Scholar
  36. Veenstra, R. D., R. W. Joyner, and D. A. Rawling. 1984 Purkinje and ventricular activation sequences of canine papillary muscle. Effects of quinidine and calcium on the purkinje-ventricular conduction delay.Circ.Res..54: 500–515.PubMedCrossRefGoogle Scholar
  37. Wahler, G. M. and S. J. Dollinger. 1994 Time course of postnatal changes in rat heart action potential and in transient outward current is different.Am.J.Physiol..267: H1157–H1166.PubMedGoogle Scholar
  38. Wang, L. and H. J. Duff. 1997 Developmental changes in transient outward current in mouse ventricle.Circ.Res..81: 120–127.PubMedCrossRefGoogle Scholar
  39. Wang, Y. G., M. B. Wagner, R. Kumar, W. N. Goolsby, and R. W. Joyner. 2000 Fast pacing facilitates discontinuous action potential propagation between rabbit atrial cells.Am.J PhysioL.In Press.Google Scholar
  40. Wang, Z., B. Fermini, and S. Nattel. 1993 Mechanism of flecainide’s rate-dependent actions on action potential duration in canine atrial tissue.J.PharmacoLExp.Ther..267: 575–581.Google Scholar
  41. Wettwer, E., G. J. Amos, H. Posival, and U. Ravens. 1994 Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin.Circ.Res..75: 473–482.PubMedCrossRefGoogle Scholar
  42. Wiedmann, R. T., R. C. Tan, and R. W. Joyner. 1996 Discontinuous conduction at Purkinje-ventricular muscle junction.Am.J.Physiol..271: H1507–16.PubMedGoogle Scholar
  43. Wilders, R., R. Kumar, R. W. Joyner, H. J. Jongsma, E. E. Verheijck, D. Golod, A. C. van Ginneken, and W. N. Goolsby. 1996 Action potential conduction between a ventricular cell model and an isolated ventricular cell.Biophys.J..70: 281–295.PubMedCrossRefGoogle Scholar
  44. Zuanetti, G., R. H. Hoyt, and P. B. Corr. 1990 Beta-adrenergic-mediated influences on microscopic conduction in epicardial regions overlying infarcted myocardium.Circ.Res..67: 284–302.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Mary B. Wagner
    • 1
  • Ronald W. Joyner
    • 1
  1. 1.Emory UniversityAtlanta

Personalised recommendations