Skip to main content

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 12))

  • 153 Accesses

Abstract

Cardiac fibrillation is a major health problem in industrialized society today. In the United States alone, ventricular fibrillation (VF) is responsible for approximately 300,000 sudden cardiac deaths (Myerburg,Catellanos,1997). On the other hand, atrial fibrillation (AF) afflicts over 2 million Americans, (Feinberg et a1,1995) which makes it the most prevalent cardiac arrhythmia in clinical practice. While AF in and of itself does not usually lead to death, it is the most important cause of stroke. (Wolf et a1,1991). Because of the alarming nature of these statistics, understanding the mechanisms underlying fibrillation of the heart is very critical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Allessie MA, Bonke FI, Schopman FJ 1977. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ.Res. 41:9–18.

    Article  PubMed  CAS  Google Scholar 

  • Anumonwo JM, Horta J, Delmar M, Taffet SM, Jalife J 1999. Proton and zinc effects on HERG currents. Biophysical Journal 77:282–298.

    Article  PubMed  CAS  Google Scholar 

  • Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M 1997 Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 96:3157–3163.

    Article  PubMed  CAS  Google Scholar 

  • Balakhovskii IS 1965. Several modes of excitation movement in ideal excitable tissue. Biophysics 10:1175–1179.

    Google Scholar 

  • Barilla F, Mangieri E, Critelli G 1996. An irregularly irregular rhythm. Pacing Clin.Electrophysiol. 19:861–862.

    Article  PubMed  CAS  Google Scholar 

  • Bayly PV, Johnson EE, Wolf PD, Greenside HS, Smith WM, Ideker RE 1993 A quantitative measurement of spatial order in ventricular fibrillation. J.Cardiovasc.Electrophysiol. 4:533–546.

    Article  PubMed  CAS  Google Scholar 

  • Beaumont J, Davidenko N, Davidenko JM, Jalife J 1998. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. Biophys.J. 75:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Beaumont, J, Jalife, J. Rotors and spiral waves in two dimensions. In: Cardiac Electrophysiology From Cell to Bedside. Zipes, DP, Jalife, J, eds. 2000. W.B. Saunders, Philadelphia, PA.

    Google Scholar 

  • Berenfeld O, Mandapati R, Dixit S, Skanes AC, Chen J, Mansour M, Jalife J 2000. Spatially distributed dominant excitation frequencies reveal hidden organization in atrial fibrillation in the Langendorff-perfused sheep heart. J.Cardiovasc.Electrophysiol. 11:869–879.

    Article  PubMed  CAS  Google Scholar 

  • Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kiihlkamp V 1999. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc.Res. 44:121–131.

    Article  PubMed  CAS  Google Scholar 

  • Brundel BJ, Van Gelder IC, Henning RH, Tieleman RG, Tuinenburg AE, Wietses M, Grandjean JG, Van Gilst WH, Crijns RI 2001. Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation 103:684–690.

    Article  PubMed  CAS  Google Scholar 

  • Brundel BJ, Van Gelder IC, Henning RH, Tuinenburg AE, Deelman LE, Tieleman RG, Grandjean JG, Van Gilst WH, Crijns HJ 1999 Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc.Res. 42:443–454.

    Article  PubMed  CAS  Google Scholar 

  • Cabo C, Pertsov AM, Baxter WT, Davidenko JM, Gray RA, Jalife J 1994 Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle. Circ.Res. 75:1014–1028.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Mandapati R, Berenfeld O, Skanes AC, Gray RA, Jalife J 2000 Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart. Cardiovasc.Res. 48:220–232.

    Article  PubMed  CAS  Google Scholar 

  • Chialvo DR, Gilmour RF, Jr., Jalife J 1990. Low dimensional chaos in cardiac tissue. Nature 343:653–657.

    Article  PubMed  CAS  Google Scholar 

  • Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T 1984 Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N.Engl.J Med. 311:819–823.

    Article  PubMed  CAS  Google Scholar 

  • Corey S, Clapham DE 2001. The Stoichiometry of Gbeta gamma binding to Gprotein-regulated inwardlyrectifying K+ channels (GIRKs). J Biol. Chem. 276:11409–11413.

    Article  PubMed  CAS  Google Scholar 

  • Damle RS, Kaman NM, Robinson NS, Ge YZ, Goldberger JJ, Kadish AH 1992. Spatial and temporal linking of epicardial activation directions during ventricular fibrillation in dogs. Evidence for underlying organization. Circulation 86:1547–1558.

    Article  PubMed  CAS  Google Scholar 

  • Daoud EG, Knight BP, Weiss R, Bahu M, Paladino W, Goyal R, Man KC, Strickberger SA, Morady F 1997 Effect of verapamil and procainamide on atrial fibrillation-induced electrical remodeling in humans. Circulation 96:1542–1550.

    Article  PubMed  CAS  Google Scholar 

  • Davidenko JM, Kent PF, Chialvo DR, Michaels DC, Jalife J 1990. Sustained vortex-like waves in normal isolated ventricular muscle. Proc. Natl. Acad. Sci. U.S.A. 87:8785–8789.

    Article  PubMed  CAS  Google Scholar 

  • Davidenko JM, Pertsov AM, Salomonsz R, Baxter WT, Jalife J 1991 Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355:349–351.

    Article  Google Scholar 

  • Dhein S, Van Train KF 2001. Muscarinic receptors in the mammalian heart. Pharmacol.Ther. 44:161–82.

    CAS  Google Scholar 

  • Dobrev D, Graf E, Wettwer E, Himmel HM, Hala O, Doerfel C, Christ T, Schuler S, Ravens U 2001. Molecular basis of downregulation of Gprotein-coupled inward rectifying K(+) current (I(K,ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced I(K,ACh) and muscarinic receptor-mediated shortening of action potentials. Circulation 104:2551–2557.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG 1995. Prevalence, age distribution, and gender of patients with atrial fibrillation. Arch. Intern. Med. 155:469–473.

    CAS  Google Scholar 

  • Fenton F, Karma A 1998. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos 8:20–47.

    Article  PubMed  Google Scholar 

  • Fields JZ, Roeske WR, Morkin E, Yamamura HI 1978. Cardiac muscarinic cholinergic receptors. Biochemical identification and characterization. J.Biol.Chem. 253:3251–3258.

    PubMed  CAS  Google Scholar 

  • Garfinkel A, Kim YH, Voroshilovsky O, Qu ZL, Kil JR, Lee MH, Karagueuzian HS, Weiss JN, Chen PS 2000. Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. U.S.A. 97:6061–6066.

    Article  PubMed  CAS  Google Scholar 

  • Garrey WE 1914. The nature of fibrillatory contraction of the heart. Its relation to tissue mass and form. Am. J. Physiol. 30:397–414.

    Google Scholar 

  • Gaspo R, Bosch RF, Bou-Abboud E, Nattel S 1997. Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ.Res. 81:1045–1052.

    Article  PubMed  CAS  Google Scholar 

  • Gaspo R, Sun H, Fareh S, Levi M, Yue L, Allen BG, Hebert TE, Nattel S 1999 Dihydropyridine and beta adrenergic receptor binding in dogs with tachycardia-induced atrial fibrillation. Cardiovasc.Res. 42:434–442.

    Article  PubMed  CAS  Google Scholar 

  • Gerstenfeld EP, Sahakian AV, Swiryn S 1992 Evidence for transient linking of atrial excitation during atrial fibrillation in humans. Circulation 86:375–382.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour RF, Jr., Otani NF, Watanabe MA 1997. Memory and complex dynamics in cardiac Purkinje fibers. Am.J.Physiol. 272:H1826–H1832.

    PubMed  CAS  Google Scholar 

  • Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JIM, Pertsov AM 1995. Mechanisms of cardiac fibrillation. Science 270:1222–1223.

    Article  PubMed  CAS  Google Scholar 

  • Gray RA, Pertsov AM, Jalife J 1998. Spatial and temporal organization during cardiac fibrillation. Nature 392:75–78.

    Article  PubMed  CAS  Google Scholar 

  • Gros D, Jarry-Guichard T, ten V, I, de Maziere A, van Kempen MJ, Davoust J, Briand JP, Moorman AF, Jongsma HJ 1994. Restricted distribution of connexin40, a gap junctional protein, in mammalian heart. Circ.Res. 74:839–851.

    Article  PubMed  CAS  Google Scholar 

  • Horvath G, Goldberger LI, Kadish AH 2000 Simultaneous occurrence of atrial fibrillation and atrial flutter. J.Cardiovasc.Electrophysiol. 11:849–858.

    Article  PubMed  CAS  Google Scholar 

  • Jalife J, Morley GE, Tallini NY, Vaidya D 1998. A fungal metabolite that eliminates motion artifacts. J.Cardiovasc.Electrophysiol. 9:1358–1362.

    Article  PubMed  CAS  Google Scholar 

  • Jalife, J. 2000 Ventricular fibrillation: mechanisms of initiation and maintenance. Annual Review of Physiology 62:25–50

    Article  PubMed  CAS  Google Scholar 

  • Kaab S, Nuss HB, Chiamvimonvat N, ORourke B, Pak PH, Kass DA, Marban E, Tomaselli GF 1996 Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ.Res.78:262–273.

    Article  PubMed  CAS  Google Scholar 

  • Karma A 1994. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 4:461–472.

    Article  PubMed  Google Scholar 

  • Karma A 2000. New paradigm for drug therapies of cardiac fibrillation. Proc.Natl.Acad.Sci.U.S.A. 97:5687–5689.

    Article  PubMed  CAS  Google Scholar 

  • Krinskii VI 1966 Excitation propagation in nonhomogenous medium (actions analogous to heart fibrillation). Biofizika 11:676–683.

    PubMed  CAS  Google Scholar 

  • Krinsky VI 1978. Mathematical models of cardiac arrhythmias (spiral waves). Pharmacology & Therapeutics - Part B: General & Systematic Pharmacology 3:539–555.

    Article  CAS  Google Scholar 

  • Krinsky, VI. 1984. Self-Organization: Autowaves and Structures Far from Equilibrium. Springer, Berlin.

    Book  Google Scholar 

  • Lewis, T (1925). The mechanism and graphic registration of the heart beat. Shaw & Sons, London.

    Google Scholar 

  • Li D, Zhang L, Kneller J, Nattel S 2001. Potential ionic mechanism for repolarization differences between canine right and left atrium. Circ Res 88:1168–1175.

    Article  PubMed  CAS  Google Scholar 

  • Mandapati R, Skanes A, Chen J, Berenfeld O, Jalife J 2000. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation 101:194–199.

    Article  PubMed  CAS  Google Scholar 

  • Mansour MC, Mandapati R, Berenfeld O, Chen J, Samie FH, Jalife J. 2001 Leftto-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart. Circulation 103:2631–2636.

    Article  PubMed  CAS  Google Scholar 

  • McWilliam JA 1887. Fibrillar contraction of the heart. Journal of Physiology 8:296–310.

    PubMed  CAS  Google Scholar 

  • Mines GR 1914. On circulating excitation on heart muscles and their possible relation to tachycardia and fibrillation. Trans.R.Soc.Can 4:43–53.

    Google Scholar 

  • Moe GK 1962. On the multiple wavelet hypothesis of atrial fibrillation. Archives Internationales de Pharmacodynamie et de Therapie CXL:183–188.

    Google Scholar 

  • Moe GK, Rheinboldt WC, Abildskov JA 1964. A computer model of atrial fibrillation. American Heart Journal 67:200–220.

    Article  PubMed  CAS  Google Scholar 

  • Morillo CA, Klein GJ, Jones DL, Guiraudon CM 1995 Chronic rapid atrial pacing: Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 91:1588–1595.

    Article  PubMed  CAS  Google Scholar 

  • Myerburg, RJ, Castellanos, A 1997. Cardiac arrest and sudden cardiac death. In: Heart Disease: A Textbook of Cardiovascular Medicine. Braunwald,E, ed. W.B. Saunders, Philadelphia, PA.

    Google Scholar 

  • Nattel S 2002 New ideas about atrial fibrillation 50 years on. Nature 415:219–226.

    Article  PubMed  CAS  Google Scholar 

  • Nattel S, Khairy P, Schram G 2001. Arrhythmogenic ionic remodeling: adaptive responses with maladaptive consequences. Trends Cardiovasc.Med. 11:295–301.

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou P, Monahan K, Boyle NG, Seifert MJ, Beswick P, Zebede J, Epstein LM, Josephson ME 1996. Site-dependent intra-atrial conduction delay. Relationship to initiation of atrial fibrillation. Circulation 94:384–389.

    Article  PubMed  CAS  Google Scholar 

  • Pertsov AM, Emarkova EA, Panfilov AV 1984. Rotating spiral waves in modified FitzHugh-Nagumo model. Physica D 14:117–124.

    Article  Google Scholar 

  • Power JM, Beacom GA, Alferness CA, Raman J, Wijffels M, Farish SJ, Burrell LM, Tonkin AM 1998. Susceptibility to atrial fibrillation: a study in an ovine model of pacing-induced early heart failure. J Cardiovasc. Electrophysiol. 9:423–435.

    Article  PubMed  CAS  Google Scholar 

  • Qu Z, Kil J, Xie F, Garfinkel A, Weiss IN 2000. Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation. Biophys.J 78:2761–2775.

    Article  PubMed  CAS  Google Scholar 

  • Qu Z, Weiss JN, Garfinkel A 1999. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. Am.J Physiol 276:H269–H283.

    PubMed  CAS  Google Scholar 

  • Qu Z, Xie F, Garfinkel A, Weiss JN 2000. Origins of spiral wave meander and breakup in a two-dimensional cardiac tissue model. Ann.Biomed.Eng 28:755–771.

    Article  PubMed  CAS  Google Scholar 

  • Rockman HA, Koch WJ, Lefkowitz RJ 1997 Cardiac function in genetically engineered mice with altered adrenergic receptor signaling. Am.J Physiol 272:H1553–H1559.

    PubMed  CAS  Google Scholar 

  • Rogers JM, Ideker RE 2000. Fibrillating myocardium: rabbit warren or beehive? Circ.Res. 86:369–370.

    Article  PubMed  CAS  Google Scholar 

  • Rozenshtraukh LV, Zaitsev AV, Pertsov AM, Fast VG, Krinskii VI 1988. The mechanism of the development of atrial tachyarrhythmia after stimulation of the vagus nerve. Kardiologiia 28:79–84.

    PubMed  CAS  Google Scholar 

  • Samie FH, Berenfeld O, Anumonwo J, Mironov SF, Udassi S, Beaumont J, Taffet S, Jalife J 2001. Rectification of the Background Potassium Current: A Determinant of Rotor Dynamics in Ventricular Fibrillation. Circ Res 89:1216–1223.

    Article  PubMed  CAS  Google Scholar 

  • Samie FH, Mandapati R, Gray RA, Watanabe Y, Zuur C, Beaumont J, Jalife J 2000. A mechanism of transition from ventricular fibrillation to tachycardia: Effect of calcium channel blockade on the dynamics of rotating waves. Circ.Res. 86:684–691.

    Article  PubMed  CAS  Google Scholar 

  • Scherf D, Romano RI, Terranova R 1958. Experimental Studies on auricular flutter and auricular fibrillation. Am. Heart J 36:241–255.

    Article  Google Scholar 

  • Schuessler RB, Grayson TM, Bromberg BI, Cox JL, Boineau JP 1992. Cholinergically mediated tachyarrhythmias induced by a single extrastimulus in the isolated canine right atrium. Circ.Res. 71:1254–1267.

    Article  PubMed  CAS  Google Scholar 

  • Sharifov OF, Fedorov VV, Beloshapko GG, Yushmanova AV, Rosenshtraukh LV 2001. Effects of E047/1, a new antiarrhythmic drug, on experimental atrial fibrillation in anesthetized dogs. J Cardiovasc. Pharmacol, 38:706–714.

    Article  PubMed  CAS  Google Scholar 

  • Sih HJ, Berbari EJ, Zipes DP 1997. Epicardial maps of atrial fibrillation after linear ablation lesions. J.Cardiovasc.Electrophysiol. 8:1046–1054.

    Article  PubMed  CAS  Google Scholar 

  • Skanes AC, Mandapati R, Berenfeld O, Davidenko JM, Jalife J 1998. Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart. Circulation 98:1236–1248.

    Article  PubMed  CAS  Google Scholar 

  • Starmer CF, Romashko DN, Reddy RS, Zilberter YI, Starobin J, Grant AO, Krinsky VI 1995. Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias. Circulation 92:595–605.

    Article  PubMed  CAS  Google Scholar 

  • Tieleman RG, De Langen C, Van Gelder IC, de Kam PJ, Grandjean J, Bel KJ, Wijffels MC, Allessie MA, Crijns HJ 1997 Verapamil reduces tachycardia-induced electrical remodeling of the atria. Circulation 95:1945–1953.

    Article  PubMed  CAS  Google Scholar 

  • Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, Nerbonne JM 1999. Atrial L-type Ca2+ currents and human atrial fibrillation. Circ.Res. 85:428–436.

    Article  PubMed  Google Scholar 

  • Van Wagoner DR, Pond AL, McCarthy PM, Trimmer JS, Nerbonne JM 1997 Outward K+current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ.Res. 80:772–781.

    Article  PubMed  Google Scholar 

  • Weiner N, Rosenblueth A 1946. The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex 16:205–265.

    Google Scholar 

  • Wellner-Kienitz MC, Bender K, Pott L 2001. Overexpression of beta 1 and beta 2 adrenergic receptors in rat atrial myocytes. Differential coupling to G protein-gated inward rectifier K(+) channels via G(s) and G(i)/o. J B iol.Chem.276:37347–37354.

    Article  CAS  Google Scholar 

  • Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA 1995. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92:1954–1968.

    Article  PubMed  CAS  Google Scholar 

  • Winterberg, H., Studien uber Herzflimmern 1907. I. Über die Wirkung des N. vagus und accelerans auf das Flimmern des Herzens. Pflügers Arch. Physiol. 117:223–256.

    Article  Google Scholar 

  • Witkowski FX, Kavanagh KM, Penkoske PA, Plonsey R, Spano ML, Ditto WL, Kaplan DT 1995. Evidence for determinism in ventricular fibrillation. Phys.Rev.Lett. 75:1230–1233.

    Article  PubMed  CAS  Google Scholar 

  • Wolf PA, Abbot RD, Kannel WB 1991. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 22:983–988.

    Article  PubMed  CAS  Google Scholar 

  • Workman AJ, Kane KA, Rankin AC 2001 The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc.Res 52:226–235.

    Article  PubMed  CAS  Google Scholar 

  • Zaitsev AV, Berenfeld O, Mironov SF, Jalife J, Pertsov AM 2000. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ.Res. 86:408–417.

    Article  PubMed  CAS  Google Scholar 

  • Thang LM, Wang Z, Nattel S 2002 Effects of sustained beta-adrenergic stimulation on ionic currents of cultured adult guinea pig cardiomyocytes. Am.J Physiol Heart Circ.Physiol 282:H880–H889.

    Google Scholar 

  • Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT 1998. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys.J 74:230–241.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anumonwo, J.M.B., Berenfeld, O., Dhamoon, A., Jalife, J. (2002). Ionic Channels and Fibrillation. In: Heart Cell Coupling and Impulse Propagation in Health and Disease. Basic Science for the Cardiologist, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1155-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1155-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5419-2

  • Online ISBN: 978-1-4615-1155-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics