Ionic Channels and Fibrillation

  • Justus M. B. Anumonwo
  • Omer Berenfeld
  • Amit Dhamoon
  • José Jalife
Part of the Basic Science for the Cardiologist book series (BASC, volume 12)


Cardiac fibrillation is a major health problem in industrialized society today. In the United States alone, ventricular fibrillation (VF) is responsible for approximately 300,000 sudden cardiac deaths (Myerburg,Catellanos,1997). On the other hand, atrial fibrillation (AF) afflicts over 2 million Americans, (Feinberg et a1,1995) which makes it the most prevalent cardiac arrhythmia in clinical practice. While AF in and of itself does not usually lead to death, it is the most important cause of stroke. (Wolf et a1,1991). Because of the alarming nature of these statistics, understanding the mechanisms underlying fibrillation of the heart is very critical.


Atrial Fibrillation Ventricular Fibrillation Action Potential Duration Spiral Wave Electrical Remodel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allessie MA, Bonke FI, Schopman FJ 1977. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ.Res. 41:9–18.PubMedCrossRefGoogle Scholar
  2. Anumonwo JM, Horta J, Delmar M, Taffet SM, Jalife J 1999. Proton and zinc effects on HERG currents. Biophysical Journal 77:282–298.PubMedCrossRefGoogle Scholar
  3. Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M 1997 Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 96:3157–3163.PubMedCrossRefGoogle Scholar
  4. Balakhovskii IS 1965. Several modes of excitation movement in ideal excitable tissue. Biophysics 10:1175–1179.Google Scholar
  5. Barilla F, Mangieri E, Critelli G 1996. An irregularly irregular rhythm. Pacing Clin.Electrophysiol. 19:861–862.PubMedCrossRefGoogle Scholar
  6. Bayly PV, Johnson EE, Wolf PD, Greenside HS, Smith WM, Ideker RE 1993 A quantitative measurement of spatial order in ventricular fibrillation. J.Cardiovasc.Electrophysiol. 4:533–546.PubMedCrossRefGoogle Scholar
  7. Beaumont J, Davidenko N, Davidenko JM, Jalife J 1998. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. Biophys.J. 75:1–14.PubMedCrossRefGoogle Scholar
  8. Beaumont, J, Jalife, J. Rotors and spiral waves in two dimensions. In: Cardiac Electrophysiology From Cell to Bedside. Zipes, DP, Jalife, J, eds. 2000. W.B. Saunders, Philadelphia, PA.Google Scholar
  9. Berenfeld O, Mandapati R, Dixit S, Skanes AC, Chen J, Mansour M, Jalife J 2000. Spatially distributed dominant excitation frequencies reveal hidden organization in atrial fibrillation in the Langendorff-perfused sheep heart. J.Cardiovasc.Electrophysiol. 11:869–879.PubMedCrossRefGoogle Scholar
  10. Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kiihlkamp V 1999. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc.Res. 44:121–131.PubMedCrossRefGoogle Scholar
  11. Brundel BJ, Van Gelder IC, Henning RH, Tieleman RG, Tuinenburg AE, Wietses M, Grandjean JG, Van Gilst WH, Crijns RI 2001. Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation 103:684–690.PubMedCrossRefGoogle Scholar
  12. Brundel BJ, Van Gelder IC, Henning RH, Tuinenburg AE, Deelman LE, Tieleman RG, Grandjean JG, Van Gilst WH, Crijns HJ 1999 Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc.Res. 42:443–454.PubMedCrossRefGoogle Scholar
  13. Cabo C, Pertsov AM, Baxter WT, Davidenko JM, Gray RA, Jalife J 1994 Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle. Circ.Res. 75:1014–1028.PubMedCrossRefGoogle Scholar
  14. Chen J, Mandapati R, Berenfeld O, Skanes AC, Gray RA, Jalife J 2000 Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart. Cardiovasc.Res. 48:220–232.PubMedCrossRefGoogle Scholar
  15. Chialvo DR, Gilmour RF, Jr., Jalife J 1990. Low dimensional chaos in cardiac tissue. Nature 343:653–657.PubMedCrossRefGoogle Scholar
  16. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T 1984 Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N.Engl.J Med. 311:819–823.PubMedCrossRefGoogle Scholar
  17. Corey S, Clapham DE 2001. The Stoichiometry of Gbeta gamma binding to Gprotein-regulated inwardlyrectifying K+ channels (GIRKs). J Biol. Chem. 276:11409–11413.PubMedCrossRefGoogle Scholar
  18. Damle RS, Kaman NM, Robinson NS, Ge YZ, Goldberger JJ, Kadish AH 1992. Spatial and temporal linking of epicardial activation directions during ventricular fibrillation in dogs. Evidence for underlying organization. Circulation 86:1547–1558.PubMedCrossRefGoogle Scholar
  19. Daoud EG, Knight BP, Weiss R, Bahu M, Paladino W, Goyal R, Man KC, Strickberger SA, Morady F 1997 Effect of verapamil and procainamide on atrial fibrillation-induced electrical remodeling in humans. Circulation 96:1542–1550.PubMedCrossRefGoogle Scholar
  20. Davidenko JM, Kent PF, Chialvo DR, Michaels DC, Jalife J 1990. Sustained vortex-like waves in normal isolated ventricular muscle. Proc. Natl. Acad. Sci. U.S.A. 87:8785–8789.PubMedCrossRefGoogle Scholar
  21. Davidenko JM, Pertsov AM, Salomonsz R, Baxter WT, Jalife J 1991 Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355:349–351.CrossRefGoogle Scholar
  22. Dhein S, Van Train KF 2001. Muscarinic receptors in the mammalian heart. Pharmacol.Ther. 44:161–82.Google Scholar
  23. Dobrev D, Graf E, Wettwer E, Himmel HM, Hala O, Doerfel C, Christ T, Schuler S, Ravens U 2001. Molecular basis of downregulation of Gprotein-coupled inward rectifying K(+) current (I(K,ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced I(K,ACh) and muscarinic receptor-mediated shortening of action potentials. Circulation 104:2551–2557.PubMedCrossRefGoogle Scholar
  24. Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG 1995. Prevalence, age distribution, and gender of patients with atrial fibrillation. Arch. Intern. Med. 155:469–473.Google Scholar
  25. Fenton F, Karma A 1998. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos 8:20–47.PubMedCrossRefGoogle Scholar
  26. Fields JZ, Roeske WR, Morkin E, Yamamura HI 1978. Cardiac muscarinic cholinergic receptors. Biochemical identification and characterization. J.Biol.Chem. 253:3251–3258.PubMedGoogle Scholar
  27. Garfinkel A, Kim YH, Voroshilovsky O, Qu ZL, Kil JR, Lee MH, Karagueuzian HS, Weiss JN, Chen PS 2000. Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. U.S.A. 97:6061–6066.PubMedCrossRefGoogle Scholar
  28. Garrey WE 1914. The nature of fibrillatory contraction of the heart. Its relation to tissue mass and form. Am. J. Physiol. 30:397–414.Google Scholar
  29. Gaspo R, Bosch RF, Bou-Abboud E, Nattel S 1997. Tachycardia-induced changes in Na+ current in a chronic dog model of atrial fibrillation. Circ.Res. 81:1045–1052.PubMedCrossRefGoogle Scholar
  30. Gaspo R, Sun H, Fareh S, Levi M, Yue L, Allen BG, Hebert TE, Nattel S 1999 Dihydropyridine and beta adrenergic receptor binding in dogs with tachycardia-induced atrial fibrillation. Cardiovasc.Res. 42:434–442.PubMedCrossRefGoogle Scholar
  31. Gerstenfeld EP, Sahakian AV, Swiryn S 1992 Evidence for transient linking of atrial excitation during atrial fibrillation in humans. Circulation 86:375–382.PubMedCrossRefGoogle Scholar
  32. Gilmour RF, Jr., Otani NF, Watanabe MA 1997. Memory and complex dynamics in cardiac Purkinje fibers. Am.J.Physiol. 272:H1826–H1832.PubMedGoogle Scholar
  33. Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JIM, Pertsov AM 1995. Mechanisms of cardiac fibrillation. Science 270:1222–1223.PubMedCrossRefGoogle Scholar
  34. Gray RA, Pertsov AM, Jalife J 1998. Spatial and temporal organization during cardiac fibrillation. Nature 392:75–78.PubMedCrossRefGoogle Scholar
  35. Gros D, Jarry-Guichard T, ten V, I, de Maziere A, van Kempen MJ, Davoust J, Briand JP, Moorman AF, Jongsma HJ 1994. Restricted distribution of connexin40, a gap junctional protein, in mammalian heart. Circ.Res. 74:839–851.PubMedCrossRefGoogle Scholar
  36. Horvath G, Goldberger LI, Kadish AH 2000 Simultaneous occurrence of atrial fibrillation and atrial flutter. J.Cardiovasc.Electrophysiol. 11:849–858.PubMedCrossRefGoogle Scholar
  37. Jalife J, Morley GE, Tallini NY, Vaidya D 1998. A fungal metabolite that eliminates motion artifacts. J.Cardiovasc.Electrophysiol. 9:1358–1362.PubMedCrossRefGoogle Scholar
  38. Jalife, J. 2000 Ventricular fibrillation: mechanisms of initiation and maintenance. Annual Review of Physiology 62:25–50PubMedCrossRefGoogle Scholar
  39. Kaab S, Nuss HB, Chiamvimonvat N, ORourke B, Pak PH, Kass DA, Marban E, Tomaselli GF 1996 Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ.Res.78:262–273.PubMedCrossRefGoogle Scholar
  40. Karma A 1994. Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 4:461–472.PubMedCrossRefGoogle Scholar
  41. Karma A 2000. New paradigm for drug therapies of cardiac fibrillation. Proc.Natl.Acad.Sci.U.S.A. 97:5687–5689.PubMedCrossRefGoogle Scholar
  42. Krinskii VI 1966 Excitation propagation in nonhomogenous medium (actions analogous to heart fibrillation). Biofizika 11:676–683.PubMedGoogle Scholar
  43. Krinsky VI 1978. Mathematical models of cardiac arrhythmias (spiral waves). Pharmacology & Therapeutics - Part B: General & Systematic Pharmacology 3:539–555.CrossRefGoogle Scholar
  44. Krinsky, VI. 1984. Self-Organization: Autowaves and Structures Far from Equilibrium. Springer, Berlin.CrossRefGoogle Scholar
  45. Lewis, T (1925). The mechanism and graphic registration of the heart beat. Shaw & Sons, London.Google Scholar
  46. Li D, Zhang L, Kneller J, Nattel S 2001. Potential ionic mechanism for repolarization differences between canine right and left atrium. Circ Res 88:1168–1175.PubMedCrossRefGoogle Scholar
  47. Mandapati R, Skanes A, Chen J, Berenfeld O, Jalife J 2000. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation 101:194–199.PubMedCrossRefGoogle Scholar
  48. Mansour MC, Mandapati R, Berenfeld O, Chen J, Samie FH, Jalife J. 2001 Leftto-right gradient of atrial frequencies during acute atrial fibrillation in the isolated sheep heart. Circulation 103:2631–2636.PubMedCrossRefGoogle Scholar
  49. McWilliam JA 1887. Fibrillar contraction of the heart. Journal of Physiology 8:296–310.PubMedGoogle Scholar
  50. Mines GR 1914. On circulating excitation on heart muscles and their possible relation to tachycardia and fibrillation. Trans.R.Soc.Can 4:43–53.Google Scholar
  51. Moe GK 1962. On the multiple wavelet hypothesis of atrial fibrillation. Archives Internationales de Pharmacodynamie et de Therapie CXL:183–188.Google Scholar
  52. Moe GK, Rheinboldt WC, Abildskov JA 1964. A computer model of atrial fibrillation. American Heart Journal 67:200–220.PubMedCrossRefGoogle Scholar
  53. Morillo CA, Klein GJ, Jones DL, Guiraudon CM 1995 Chronic rapid atrial pacing: Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 91:1588–1595.PubMedCrossRefGoogle Scholar
  54. Myerburg, RJ, Castellanos, A 1997. Cardiac arrest and sudden cardiac death. In: Heart Disease: A Textbook of Cardiovascular Medicine. Braunwald,E, ed. W.B. Saunders, Philadelphia, PA.Google Scholar
  55. Nattel S 2002 New ideas about atrial fibrillation 50 years on. Nature 415:219–226.PubMedCrossRefGoogle Scholar
  56. Nattel S, Khairy P, Schram G 2001. Arrhythmogenic ionic remodeling: adaptive responses with maladaptive consequences. Trends Cardiovasc.Med. 11:295–301.PubMedCrossRefGoogle Scholar
  57. Papageorgiou P, Monahan K, Boyle NG, Seifert MJ, Beswick P, Zebede J, Epstein LM, Josephson ME 1996. Site-dependent intra-atrial conduction delay. Relationship to initiation of atrial fibrillation. Circulation 94:384–389.PubMedCrossRefGoogle Scholar
  58. Pertsov AM, Emarkova EA, Panfilov AV 1984. Rotating spiral waves in modified FitzHugh-Nagumo model. Physica D 14:117–124.CrossRefGoogle Scholar
  59. Power JM, Beacom GA, Alferness CA, Raman J, Wijffels M, Farish SJ, Burrell LM, Tonkin AM 1998. Susceptibility to atrial fibrillation: a study in an ovine model of pacing-induced early heart failure. J Cardiovasc. Electrophysiol. 9:423–435.PubMedCrossRefGoogle Scholar
  60. Qu Z, Kil J, Xie F, Garfinkel A, Weiss IN 2000. Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation. Biophys.J 78:2761–2775.PubMedCrossRefGoogle Scholar
  61. Qu Z, Weiss JN, Garfinkel A 1999. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. Am.J Physiol 276:H269–H283.PubMedGoogle Scholar
  62. Qu Z, Xie F, Garfinkel A, Weiss JN 2000. Origins of spiral wave meander and breakup in a two-dimensional cardiac tissue model. Ann.Biomed.Eng 28:755–771.PubMedCrossRefGoogle Scholar
  63. Rockman HA, Koch WJ, Lefkowitz RJ 1997 Cardiac function in genetically engineered mice with altered adrenergic receptor signaling. Am.J Physiol 272:H1553–H1559.PubMedGoogle Scholar
  64. Rogers JM, Ideker RE 2000. Fibrillating myocardium: rabbit warren or beehive? Circ.Res. 86:369–370.PubMedCrossRefGoogle Scholar
  65. Rozenshtraukh LV, Zaitsev AV, Pertsov AM, Fast VG, Krinskii VI 1988. The mechanism of the development of atrial tachyarrhythmia after stimulation of the vagus nerve. Kardiologiia 28:79–84.PubMedGoogle Scholar
  66. Samie FH, Berenfeld O, Anumonwo J, Mironov SF, Udassi S, Beaumont J, Taffet S, Jalife J 2001. Rectification of the Background Potassium Current: A Determinant of Rotor Dynamics in Ventricular Fibrillation. Circ Res 89:1216–1223.PubMedCrossRefGoogle Scholar
  67. Samie FH, Mandapati R, Gray RA, Watanabe Y, Zuur C, Beaumont J, Jalife J 2000. A mechanism of transition from ventricular fibrillation to tachycardia: Effect of calcium channel blockade on the dynamics of rotating waves. Circ.Res. 86:684–691.PubMedCrossRefGoogle Scholar
  68. Scherf D, Romano RI, Terranova R 1958. Experimental Studies on auricular flutter and auricular fibrillation. Am. Heart J 36:241–255.CrossRefGoogle Scholar
  69. Schuessler RB, Grayson TM, Bromberg BI, Cox JL, Boineau JP 1992. Cholinergically mediated tachyarrhythmias induced by a single extrastimulus in the isolated canine right atrium. Circ.Res. 71:1254–1267.PubMedCrossRefGoogle Scholar
  70. Sharifov OF, Fedorov VV, Beloshapko GG, Yushmanova AV, Rosenshtraukh LV 2001. Effects of E047/1, a new antiarrhythmic drug, on experimental atrial fibrillation in anesthetized dogs. J Cardiovasc. Pharmacol, 38:706–714.PubMedCrossRefGoogle Scholar
  71. Sih HJ, Berbari EJ, Zipes DP 1997. Epicardial maps of atrial fibrillation after linear ablation lesions. J.Cardiovasc.Electrophysiol. 8:1046–1054.PubMedCrossRefGoogle Scholar
  72. Skanes AC, Mandapati R, Berenfeld O, Davidenko JM, Jalife J 1998. Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart. Circulation 98:1236–1248.PubMedCrossRefGoogle Scholar
  73. Starmer CF, Romashko DN, Reddy RS, Zilberter YI, Starobin J, Grant AO, Krinsky VI 1995. Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias. Circulation 92:595–605.PubMedCrossRefGoogle Scholar
  74. Tieleman RG, De Langen C, Van Gelder IC, de Kam PJ, Grandjean J, Bel KJ, Wijffels MC, Allessie MA, Crijns HJ 1997 Verapamil reduces tachycardia-induced electrical remodeling of the atria. Circulation 95:1945–1953.PubMedCrossRefGoogle Scholar
  75. Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, Nerbonne JM 1999. Atrial L-type Ca2+ currents and human atrial fibrillation. Circ.Res. 85:428–436.PubMedCrossRefGoogle Scholar
  76. Van Wagoner DR, Pond AL, McCarthy PM, Trimmer JS, Nerbonne JM 1997 Outward K+current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ.Res. 80:772–781.PubMedCrossRefGoogle Scholar
  77. Weiner N, Rosenblueth A 1946. The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex 16:205–265.Google Scholar
  78. Wellner-Kienitz MC, Bender K, Pott L 2001. Overexpression of beta 1 and beta 2 adrenergic receptors in rat atrial myocytes. Differential coupling to G protein-gated inward rectifier K(+) channels via G(s) and G(i)/o. J B iol.Chem.276:37347–37354.CrossRefGoogle Scholar
  79. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA 1995. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92:1954–1968.PubMedCrossRefGoogle Scholar
  80. Winterberg, H., Studien uber Herzflimmern 1907. I. Über die Wirkung des N. vagus und accelerans auf das Flimmern des Herzens. Pflügers Arch. Physiol. 117:223–256.CrossRefGoogle Scholar
  81. Witkowski FX, Kavanagh KM, Penkoske PA, Plonsey R, Spano ML, Ditto WL, Kaplan DT 1995. Evidence for determinism in ventricular fibrillation. Phys.Rev.Lett. 75:1230–1233.PubMedCrossRefGoogle Scholar
  82. Wolf PA, Abbot RD, Kannel WB 1991. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 22:983–988.PubMedCrossRefGoogle Scholar
  83. Workman AJ, Kane KA, Rankin AC 2001 The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc.Res 52:226–235.PubMedCrossRefGoogle Scholar
  84. Zaitsev AV, Berenfeld O, Mironov SF, Jalife J, Pertsov AM 2000. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ.Res. 86:408–417.PubMedCrossRefGoogle Scholar
  85. Thang LM, Wang Z, Nattel S 2002 Effects of sustained beta-adrenergic stimulation on ionic currents of cultured adult guinea pig cardiomyocytes. Am.J Physiol Heart Circ.Physiol 282:H880–H889.Google Scholar
  86. Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT 1998. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys.J 74:230–241.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Justus M. B. Anumonwo
    • 1
  • Omer Berenfeld
    • 1
  • Amit Dhamoon
    • 1
  • José Jalife
    • 1
  1. 1.Dept. of PharmacologySUNY Upstate Medical UniversitySyracuse

Personalised recommendations