Mining of Video Database

  • Jianping Fan
  • Xingquan Zhu
  • Xiaodong Lin
Part of the Multimedia Systems and Applications Series book series (MMSA, volume 22)


As a result of decreasing cost of storage devices, increasing network bandwidth capacities, and improved compression techniques, digital videos are more accessable than ever. To help users find and retrieve relevant video effectively and facilitate new and better ways of entertainment, advanced technologies need to be developed for indexing, filtering, searching, and mining the vast amount of videos available on webs.


Access Control Video Content Salient Object Video Shot Concept Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele and P. Yanker, “Query by image and video content: The QBIC System”, IEEE Computer, vol.38, pp.23–31, 1995.CrossRefGoogle Scholar
  2. [2]
    A. Pentland, R.W. Picard, and S. Sclaroff, “Photobook: Content-based manipulation of image databases”, International Journal of Computer Vision, vol. 18, pp.233–254, 1996.CrossRefGoogle Scholar
  3. [3]
    Y. Rui, T.S. Huang, M. Ortega and S. Mehrotra, “Relevance feedback: A power tool for interactive content-based image retrieval”, IEEE Trans. on Circuits and Systems for Video Technology], vol.8, pp.644–655, 1998.CrossRefGoogle Scholar
  4. [4]
    A. Humrapur, A. Gupta, B. Horowitz, C.F. Shu, C. Fuller, J. Bach, M. Gorkani, and R. Jain, “Virage video engine”, in SPIE Proc. Storage and Retrieval for Image and Video Databases V, San Jose, CA, Feb. 1997, pp. 188–197.Google Scholar
  5. [5]
    S.F. Chang, W. Chen, H.J. Meng, H. Sundaram and D. Zhong, “A fully automatic content-based video search engine supporting spatiotemporal queries”, IEEE Trans. on Circuits and Systems for Video Technology, vol.8, pp. 602–615, 1998.CrossRefGoogle Scholar
  6. [6]
    S. Satoh and T. Kanade, “Name-It: Association of face and name in video”, in Proc. of Computer Vision and Pattern Recognition, 1997.Google Scholar
  7. [7]
    Y. Deng and B.S. Manjunath, “NeTra-V: Toward an object-based video representation”, IEEE Trans. on Circuits and Systems for Video Technology, vol.8, pp.616–627, 1998.CrossRefGoogle Scholar
  8. [8]
    H.J. Zhang, J. Wu, D. Zhong and S. Smoliar, “An integrated system for content-based video retrieval and browsing”, Pattern Recognition, vol. 30, pp.643–658, 1997.CrossRefGoogle Scholar
  9. [9]
    J. Fan, W.G. Aref, A.K. Elmagarmid, M.-S. Hacid, M.S. Marzouk, and X. Zhu, “Multi View: multilevel video content representation and retrieval”, {\em Journal of Electronic Imaging}, vol. 10, no.4, pp.895–908, 2001.Google Scholar
  10. [10]
    B. Thuraisingham, Managing and Mining Multimedia Database, CRC Press, 2001.Google Scholar
  11. [11]
    J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2001.Google Scholar
  12. [12]
    A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta and R. Jain, “Content-based image retrieval at the end of the early years”, IEEE Trans. on Pattern Aanalysis and Machine Intelligence, vol.22, pp. 1349–1380, 2000.CrossRefGoogle Scholar
  13. [13]
    J. Huang, S.R. Kumar and R. Zabih, “An automatic hierarchical image classification scheme”, ACM Multimedia, Bristol, UK, 1998.Google Scholar
  14. [14]
    T.P. Minka and R.W. Picard, “Interactive learning using a society of models”, Pattern Recognition, vol.30, pp.565, 1997.CrossRefGoogle Scholar
  15. [15]
    M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew, S. Mehrota, T.S. Huang, “Supporting ranked boolean similarity queries in MARS”, IEEE Trans. on Knowledge and Data Engineering, vol. 10, pp.905–925, 1998.CrossRefGoogle Scholar
  16. [16]
    Y. Ishikawa, R. Subramanya, C. Faloutsos, “Mindreader: Querying databases through multiple examples”, Proc. VLDB, 1998.Google Scholar
  17. [17]
    M.I. Jordan, “A statistical approach to decision tree modeling”, Machine Learning, 1996.Google Scholar
  18. [18]
    J.Z. Wang, J. Li, G. Wiederhold, “SIMPLIcity: Semantic-sensitive integrated matching for picture libraries”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.23, no.9, pp.947–963,2001.CrossRefGoogle Scholar
  19. [19]
    Y. Rui, T.S. Huang and S. Mehrotra, “Constructing table-of-content for videos”, {\em Multimedia System}, vol.7, pp.359–368, 1999.CrossRefGoogle Scholar
  20. [20]
    B.L. Yeo and M.M. Yeung, “Classification, simplification and dynamic visualization of scene transition graphs for video browsing”, Proc. SPIE, vol.3312, pp.60–70, 1997.Google Scholar
  21. [21]
    E. Bertino, J. Fan, E. Ferrari, M.-S. Hacid, and A.K. Elmagarmid, “A hierarchical access control model for video atabase systems”, technique report, 2001.Google Scholar
  22. [22]
    G.A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller, “Introduction to Word Net: An on-line lexical database”, International Journal of Lexicography, vol.3, pp.235–244, 1990.CrossRefGoogle Scholar
  23. [23]
    A.B. Benitez, J.R Smith and S.-F. Chang, “Media Net: A multimedia information Network for knowledge representation”,Proc. SPIE, 2001.Google Scholar
  24. [24]
    J. Fan, D.K.Y. Yau, W.G. Aref, A. Rezgui, “Adaptive motion-compensated video coding scheme towards content-based bitrate allocation”, Journal of Electronic Imaging, vol.9, no.4, 2000.Google Scholar
  25. [25]
    J. Fan, Y. Ji and L. Wu, “Automatic moving object extraction toward content-based video representation andindexing”, Journal of Visual Communication and Image Representation, vol.12, pp.306–347, 2001.CrossRefGoogle Scholar
  26. [26]
    C. Djeraba, “When image indexing meets knowledge discovery”, Proc. of Intl. Workshop on Multimedia Data Mining, pp.73–81, 2000.Google Scholar
  27. [27]
    B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Provate information retrieval”, Journal of the ACM, vol.45, pp.965–982, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protecting data provacy in private information retrieval schemes”, Proc. of STOC, pp. 151–160, Dallas, TX, USA, 1998.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Jianping Fan
    • 1
  • Xingquan Zhu
    • 2
  • Xiaodong Lin
    • 3
  1. 1.Department of Computer ScienceUniversity of North CarolinaCharlotteUSA
  2. 2.Department of Computer SciencePurdue UniversityWest LafayetteUSA
  3. 3.Department of StatisticsPurdue UniversityWest LafayetteUSA

Personalised recommendations