Advertisement

Techniques for Color-Based Image Retrieval

  • Renato O. Stehling
  • Mario A. Nascimento
  • Alexandre X. Falcão
Part of the Multimedia Systems and Applications Series book series (MMSA, volume 22)

Abstract

Image databases are becoming more and more common in several distinct application domains, such as (multimedia) search engines, digital libraries, medical and geographic databases and criminal investigation. The evolution of techniques for acquisition, transmission and storage of images has also allowed the construction of very large image databases. All these factors have spurred great interest in image retrieval techniques. Image retrieval is performed based on short descriptions of the images. Images may be described by a set of content-independent attributes (file name, format, category, size, author’s name, input device, date of creation and network/disk location) that can be managed through conventional database management systems — DBMS. The main drawback of this approach is that the allowed queries are limited to those based on the existing attributes. Another alternative is to use keywords or annotations, such that images can be retrieved by traditional information retrieval techniques (IR). This approach is less restrictive than the previous one, but it still has problems like incompleteness, subjectiveness and the drawback of manually annotating each individual image.

Keywords

Visual Feature Image Retrieval Color Histogram Color Distribution Visual Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Androutsos, D., Plataniotis, K. N., and Venetsanopoulos, A. N. (1999). Vector angular distance measure for indexing and retrieval of color. In Proc. of SPIE - Storage and Retrieval for Image and Video Databases VII, volume 3656, pages 604–613.Google Scholar
  2. Ashby, F. G. and Perrin, N. A. (1988). Toward a unified theory of similarity and recognition. Psychological Review, 95(1): 124–150.CrossRefGoogle Scholar
  3. Ashley, J., Barber, R., Flickner, M., et al. (1995). Automatic and semi-automatic methods for image annotation and retrieval in QBIC. In Proc. of SPIE — Storage and Retrieval for Image and Video Databases III, volume 2420, pages 24–35.Google Scholar
  4. Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison Wesley.Google Scholar
  5. Bimbo, A. D. (1999). Visual Information Retrieval. Morgan Kaufmann.Google Scholar
  6. Carson, C., Thomas, M., Belongie, S., et al. (1999). Blobworld: A system for region-based image indexing and retrieval. In Proc. of the 3rd Intl. Conf. on Visual Information Systems, pages 509–516.CrossRefGoogle Scholar
  7. Chavez, E., Navarro, G., Baeza-Yates, R., and Marroquin, J. L. (2001). Searching in metric spaces. ACM Computing Surveys, 33(3): 273–321.CrossRefGoogle Scholar
  8. Chitkara, V. (2001). Color-based image retrieval using compact binary signatures. Master’s thesis, Dept. of Computing Science, University of Alberta.Google Scholar
  9. Deng, Y. and Manjunath, B. S. (1999). An efficient low-dimensional color indexing scheme for region-based image retrieval. In IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, pages 3017–3020.Google Scholar
  10. Dimai, A. (1997). Spatial encoding using differences of global features. In Proc. of SPIE — Storage and Retrieval for Image and Video Databases IV, volume 3022, pages 352–360.Google Scholar
  11. Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene Analysis. Wiley-Interscience.Google Scholar
  12. Gaede, V. and Guenther, O. (1998). Multidimensional access methods. ACM Comp. Surveys, 30(2): 123–169.CrossRefGoogle Scholar
  13. Gonzalez, R. C. and Woods, R. E. (1992). Digital Image Processing. Addison-Wesley.Google Scholar
  14. Guibas, L. J., Rogoff, B., and Tomasi, C. (1995). Fixed-window image descriptors for image retrieval. In Proc. of SPIE — Storage and Retrieval for Image and Video Databases III, volume 2420, pages 352–362.Google Scholar
  15. Gunther, N. J. and Beretta, G. (2001). A benchmark for image retrieval using distributed systems over the internet: Birds-i. In Proc. of SPIE — Internet Imaging II, pages 252–267.Google Scholar
  16. Kaufman, L. and Rousseuw, P. J. (1990). Finding Groups in Data — An Introduction to Cluster Analysis. Wiley-Interscience.Google Scholar
  17. Krishnamachari, S. (1999). Hierarchical clustering for fast image retrieval. In Proc. of SPIE —Storage and Retrieved for Image and Video Databases VII, volume 3656, pages 427—435.Google Scholar
  18. Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quart., 2:83–97.CrossRefGoogle Scholar
  19. Leung, C. H. C. and Ip, H. H. S. (2000). Benchmarking for content-based visual information search. In Proc.of 4th Intl. Conf on Visual Information Systems, pages 442–456.Google Scholar
  20. Leung, K. S. and Ng, R. (1998). Multiresolution subimage similarity matching for large image databases. In Proc. of SPIE — Storage and Retrieval for Image and Video Databases VI, volume 3312, pages 259–270.Google Scholar
  21. Li, C, Chang, E., Garcia-Molina, H., and Weiderhold, G. (2001). Clustering for approximate similarity search in high-dimensional spaces. IEEE TKDE. To appear.Google Scholar
  22. Li, J., Wang, J. Z., and Wiederhold, G. (2000). IRM: Integrated region matching for image retrieval. In Proc. of the 8th ACM Intl. Conf. on Multimedia, pages 147–156.CrossRefGoogle Scholar
  23. Lu, G. (1999). Multimedia Database Management Systems. Artech House.Google Scholar
  24. Malki, J., Boujemaa, N., Nastar, C., et al. (1999). Region queries without segmentation for image retrieval by content. In Proc. of the 3rd Intl. Conf. on Visual Information Systems, pages 115–122.CrossRefGoogle Scholar
  25. Muller, H., Muller, W., Squire, D. M., Marchand-Maillet, S., and Pun, T. (2001). Performance evaluation in content-based image retrieval: Overview and proposals. Pattern Recognition Letters, 22:593–601.CrossRefGoogle Scholar
  26. Niblack, W., Zhu, X., Hafner, J. L., et al. (1998). Updates do the QBIC system. In Proc. of SPIE — Storage and Retrieval for Image and Video Databases VI, volume 3312, pages 150–161.Google Scholar
  27. Pass, G., Zabih, R., and Miller, J. (1996). Comparing images using color coherence vectors. In Proc. of the 4th ACM Intl. Conf. on Multimedia, pages 65–73.Google Scholar
  28. Pauwels, E. J. and Frederix, G. (1999). Finding regions of interest for content-extraction. In Proc. of SPIE – Storage and Retrieval for Image and Video Databases VII, volume 3656, pages 501–510.Google Scholar
  29. Pratt, W. K. (1991). Fast Digital Image Processing. John Wiley and Sons.Google Scholar
  30. Santini, S. and Jain, R. (1999). Similarity measures. IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9):871–883.CrossRefGoogle Scholar
  31. Santos, R. F., Traina, A., Traina, C, and Faloutsos, C. (2001). Similarity search without tears: The omni-family of all-purpose access methods. In Proc. of the 17th IEEE Intl. Conf on Data Engineering, pages 623–630.Google Scholar
  32. Sebe, N., Lew, M. S., and Huijsmans, D. P. (1999). Multi-scale sub-image search. In Proc. of the 7th ACM Intl. Conf. on Multimedia, pages 79–82.CrossRefGoogle Scholar
  33. Sethi, I. K., Coman, I., Day, B., et al. (1998). Color-wise: A system for image similarity retrieval using color. In Proc. of SPIE – Storage and Retrieval for Image and Video Databases IV, volume 3312, pages 140–149. Google Scholar
  34. Shusterman, E. and Feder, M. (1994). Image compression via improved quadtree decomposition algorithms. IEEE Trans. on Image Processing, 3(2):207–215.CrossRefGoogle Scholar
  35. Smith, J. R., Castelli, V., and Li, C. S. (1999). Adaptive storage and retrieval for large compressed images. In Proc. of SPIE – Storage and Retrieval for Image and Video Databases VII, volume 3656, pages 467–478.Google Scholar
  36. Stehling, R. O., Nascimento, M. A., and Falcão, A. X. (2000). On ‘shapes’ of colors for content-based image retrieval. In Proc. of the ACM Multimedia 2000 Workshop on Multimedia Information Retrieval, pages 171–174.Google Scholar
  37. Stehling, R. O., Nascimento, M. A., and Falcão, A. X. (2001). An adaptive and efficient clustering-based approach for content based retrieval in image databases. In Proc. of the 2001 Intl. Database Engineering and Application Symposium, pages 356–365.CrossRefGoogle Scholar
  38. Stehling, R. O., Nascimento, M. A., and Falcão, A. X. (2002). Cell histograms versus color histograms for image representation and retrieval. J. on Knowledge and Information Systems. To appear.Google Scholar
  39. Strieker, M. and Orengo, M. (1995). Similarity of color images. In Proc. of SPIE – Storage and Retrieval for Image and Video Databases III, volume 2420, pages 381–392.Google Scholar
  40. Su, Z. and Zhang, S. L. H. (2001). Extraction of feature subspaces for content-based retrieval using relevance feedback. In Proc. of 9th ACM Intl. Conference on Multimedia, pages 98–106.CrossRefGoogle Scholar
  41. Witten, I. H., Moffat, A., and Bell, T. C. (1999). Managing Gigabytes: Compressing and Indexing Documents and Images. Morgan Kaufmann.Google Scholar
  42. Wu, P. and Manjunath, B. S. (2001). Adaptive nearest neighbor search for relevance feedback in large image databases. In Proc. of 9th ACM Intl. Conference on Multimedia, pages 89–97.CrossRefGoogle Scholar
  43. Zhang, Y. J., Liu, Z. W., and He, Y. (1998). Comparison and improvement of color-based image retrieval techniques. In Proc. of SPIE — Storage and Retrieval for Image and Video Databases VI, volume 3312, pages 371–382.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Renato O. Stehling
    • 1
  • Mario A. Nascimento
    • 1
  • Alexandre X. Falcão
    • 2
  1. 1.Institute of ComputingUniversity of CampinasBrazil
  2. 2.Department of Computing ScienceUniversity of AlbertaCanada

Personalised recommendations