Skip to main content

Degradation and Synthesis of ATP

  • Chapter
ATP and the Heart

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 11))

Abstract

ATP is degraded (Figure 5.1) by sequentially hydrolyzing the three phosphoryl groups to form adenosine. Adenosine is then deaminated to form inosine. Finally the glycosidic bond joining the ribose and the purine ring is cleaved, forming hypoxanthine. These degradative reactions occur in both myocytes and non-myocytes; however, the activities of the enzymes converting adenosine to inosine, inosine to hypoxanthine and hypoxanthine to xanthine (not shown) are so much higher in non-myocytes that most of their metabolism occurs in these cells and in the extracellular space, not the myocyte. There is another pathway leading to adenosine production, the S-adenosylhomocysteine pathway (where methionine is converted to homocysteine); however, most of the adenosine in the normal heart is made from AMP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zimmer HG, Trendelenburg C, Kammermeier H, Gerlach E. De novo synthesis of myocardial adenine nucleotides in the rat. Acceleration during recovery from oxygen deficiency.Circ Res.1973;32:635–642.

    Article  PubMed  CAS  Google Scholar 

  2. Mauser M, Hoffmeister HM, Nienaber C, Schaper W. Influence of ribose, adenosine, and “AICAR” on the rate of myocardial adenosine triphosphate synthesis during reperfusion after coronary artery occlusion in the dog.Circ Res.1985;56:220–230.

    Article  PubMed  CAS  Google Scholar 

  3. Decking UK, Schlieper G, Kroll K, Schrader J. Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release.Circ Res.1997;81:154–164.

    Article  PubMed  CAS  Google Scholar 

  4. Sala-Newby GB, Freeman NV, Skladanowski AC, Newby AC. Distinct roles for recombinant cytosolic 5’-nucleotidase-I and -II in AMP and IMP catabolism in COS-7 and H9c2 rat myoblast cell lines.JBiol Chem.2000;275:11666–11671.

    Article  CAS  Google Scholar 

  5. .Skladanowski AC, Newby AC. Partial purification and properties of an AMP-specific soluble 5’-nucleotidase from pigeon heart.Biochem J.1990;268:117-122.

    PubMed  CAS  Google Scholar 

  6. Hohl AM, Hohl CM. Isolation and regulation of piglet cardiac AMP deaminase.Mol Cell Biochem.1999;201:151–158.

    Article  PubMed  CAS  Google Scholar 

  7. Kuzmin AI, Lakomkin VL, Kapelko VI, Vassort G. Interstitial ATP level and degradation in control and postmyocardial infarcted rats.Am J Physiol.1998;275:C766–771.

    PubMed  CAS  Google Scholar 

  8. Kawano S, Kuruma A, Hirayama Y, Hiraoka M. Anion permeability and conduction of adenine nucleotides through a chloride channel in cardiac sarcoplasmic reticulum.JBiol Chem.1999;274:2085–2092.

    Article  CAS  Google Scholar 

  9. Ryan JW, Smith U. Metabolism of adenosine 5’-monophosphate during circulation through the lungs.Trans Assoc Am Physicians.1971;84:297–306.

    PubMed  CAS  Google Scholar 

  10. Menezes de Oliveira E, Oliveira Battastini AM, Meirelles MN, Menezes Moreira C, Dutra Dias R, Freitas Sarkis JJ. Characterization and localization of an ATP diphosphohydrolase activity (EC 3.6.1.5) in sarcolemmal membrane from rat heart.Mol Cell Biochem.1997;170:115–123.

    Article  Google Scholar 

  11. Vassort G. Adenosine 5’-triphosphate: a P2-purinergic agonist in the myocardium.Physiol Rev.2001;81:767–806.

    PubMed  CAS  Google Scholar 

  12. de Jong JW, de Jonge R, Keijzer E, Bradamante S. The role of adenosine in preconditioning.Pharmacol Ther.2000;87:141–149.

    Article  PubMed  Google Scholar 

  13. Flores NA, Stavrou BM, Sheridan DJ. The effects of diadenosine polyphosphates on the cardiovascular system.Cardiovasc Res.1999;42:15–26.

    Article  PubMed  CAS  Google Scholar 

  14. Mubagwa K, Flameng W. Adenosine, adenosine receptors and myocardial protection: an updated overview.Cardiovasc Res.2001;52:25–39.

    Article  PubMed  CAS  Google Scholar 

  15. Shryock JC, Belardinelli L. Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology.Am JCardiol.1997;79:2–10.

    Article  CAS  Google Scholar 

  16. Bak MI, Ingwall JS. Acidosis during ischemia promotes adenosine triphosphate resynthesis in postischemic rat heart. In vivo regulation of 5’-nucleotidase.J Clin Invest.1994;93:40–49.

    Article  PubMed  CAS  Google Scholar 

  17. Ingwall JS, DeLuca M, Sybers HD, Wildenthal K. Fetal mouse hearts: a model for studying ischemia.Proc National Acad Sci U SA.1975;72:2809–2813.

    Article  CAS  Google Scholar 

  18. Bernard MP, Menasche P, Canioni E, Fontanarava C, Grousset A, Piwnica A, Cozonne P. Influence of the pH of cardioplegic solutions on intracellular pH, high-energy phosphates, and postarrest performance.J. Thorac. Cardiovas. Surg.1985;90:235–242.

    CAS  Google Scholar 

  19. Kloner RA, DeBoer LW, Darsee JR, Ingwall JS, Hale S, Turnas J, Braunwald E. Prolonged abnormalities of myocardium salvaged by reperfusion.Am J Physiol.1981;241:H591–599.

    PubMed  CAS  Google Scholar 

  20. Swain JL, Sabina RL, McHale PA, Greenfield JCJ, Holmes EW. Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog.Am J Physiol.1982;242:H818–826.

    PubMed  CAS  Google Scholar 

  21. Reimer KA, Hill ML, Jennings RB. Prolonged depletion of ATP because of delayed repletion of the adenine nucleotide pool following reversible myocardial ischemic injury in dogs.Adv Myocardiol.1983;4:395–407.

    PubMed  CAS  Google Scholar 

  22. Neill WA, Ingwall JS. Stabilization of a derangement in adenosine triphosphate metabolism during sustained, partial ischemia in the dog heart.J Am Coll Cardio.1986;8:894–900.

    Article  CAS  Google Scholar 

  23. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.Circulation.1986;74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  24. Matsuzaki M, Gallagher KP, Kemper WS, White F, Ross J Jr. Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion.Circulation.1983;68:170–182.

    Article  PubMed  CAS  Google Scholar 

  25. .Kloner RA, Jennings B. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications:part 2. Circulation. 2001;104 3158-3167.

    Article  CAS  Google Scholar 

  26. Nakano A, Cohen MV, Downey JM. Ischemic preconditioning: from basic mechanisms to clinical applications.Pharmacol Ther.2000;86:263–275.

    Article  PubMed  CAS  Google Scholar 

  27. Murry CE, Richard VJ, Reimer KA, Jennings RB. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode.Circ Res.1990;66:913–931.

    Article  PubMed  CAS  Google Scholar 

  28. Jennings RB, Sebbag L, Schwartz LM, Crago MS, Reimer KA. Metabolism of preconditioned myocardium: effect of loss and reinstatement of cardioprotection.J Mol Cell Cardiol.2001;33:1571–1588.

    Article  CAS  Google Scholar 

  29. Wikstrom G, Kavianipour M, Ronquist G, Waldenstrom A. Pre-conditioning activates adenosine utilization in a cost-effective way during myocardial ischaemia.Acta Physiol Scand.2001;173:185–194.

    Article  PubMed  CAS  Google Scholar 

  30. Kugler G. Myocardial release of inosine, hypoxanthine and lactate during pacing-induced angina in humans with coronary artery disease.Eur J Cardiol.1979;9:227–240.

    PubMed  CAS  Google Scholar 

  31. Swain JL, Sabina RL, Peyton RB, Jones RN, Wechsler AS, Holmes EW. Derangements in myocardial purine and pyrimidine nucleotide metabolism in patients with coronary artery disease and left ventricular hypertrophy.Proc Nail Acad Sci USA.1982;79:655–659.

    Article  CAS  Google Scholar 

  32. Unverferth DV, Altschuld RA, Lykens M, Hunsaker RH, Vasko JS, Kakos GS, Leier CV, Magorien RD, Kolibash AJ. Reperfusion of the human myocardium by saphenous vein bypass grafts. Biochemical considerations.J Thorac Cardiovasc Surg.1984;87:577–584.

    PubMed  CAS  Google Scholar 

  33. Flameng W, Vanhaecke J, Van Belle H, Borgers M, De Beer L, Minten J. Relation between coronary artery stenosis and myocardial purine metabolism, histology and regional function in humans.JAm Coll Cardiol.1987;9:1235–1242.

    Article  CAS  Google Scholar 

  34. Smolenski RT, Seymour AM, Yacoub MH. Dynamics of energy metabolism in the transplanted human heart during reperfusion.J Thorac Cardiovasc Surg.1994;108:938–945.

    PubMed  CAS  Google Scholar 

  35. Wiggers H, Noreng M, Paulsen PK, Bottcher M, Egeblad H, Nielsen TT, Botker HE. Energy stores and metabolites in chronic reversibly and irreversibly dysfunctional myocardium in humans.JAm Coll Cardiol.2001;37:100–108.

    Article  CAS  Google Scholar 

  36. Starling RC, Hammer DF, Altschuld RA. Human myocardial ATP content and in vivo contractile function.Mol Cell Biochem.1998;180:171–177.

    Article  PubMed  CAS  Google Scholar 

  37. Neubauer S, Beer M, Landschuetz W, Sandstede J, Seyfarth T, Lipke C, Koestler H, Pabst T, Kenn W, Meininger M, von Kienlin M, Horn M, Harre K, Hahn D. Absolute quantification of high energy phosphate metabolites in normal, hypertrophied and failing human myocardium.MAGMA.2000;11:73–74.

    PubMed  CAS  Google Scholar 

  38. Shen W, Asai K, Uechi M, Mathier MA, Shannon RP, Vatner SF, Ingwall JS. Progressive loss of myocardial ATP due to a loss of total purines during the development of heart failure in dogs: a compensatory role for the parallel loss of creatine.Circulation.1999;100:2113–2118.

    Article  PubMed  CAS  Google Scholar 

  39. Goldhaber SZ, Pohost GM, Kloner RA, Andrews E, Newell JB, Ingwall JS. Inosine: a protective agent in an organ culture model of myocardial ischemia.Circulation Research.1982;51:181–188.

    Article  PubMed  CAS  Google Scholar 

  40. Ingwall JS. Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscles.Am JPhysiol.1982;242:H729–744.

    CAS  Google Scholar 

  41. Yoshiyama M, Sakai H, Teragaki M, Takeuchi K, Takeda T, Ikata M, Ishikawa M, Miura I. The effect of inosine on the post ischemic heart as bio-energy recovering factor in 31P-MRS.Biochem Biophys Res Commun.1988;151:1408–1415.

    Article  PubMed  CAS  Google Scholar 

  42. Lewandowski ED, Johnston DL, Roberts R. Effects of inosine on glycolysis and contracture during myocardial ischemia.Circ Res.1991;68:578–587.

    Article  PubMed  CAS  Google Scholar 

  43. Mentzer RMJ, Rahko PS, Molina-Viamonte V, Canver CC, Chopra PS, Love RB, Cook TD, Hegge JO, Lasley RD. Safety, tolerance, and efficacy of adenosine as an additive to blood cardioplegia in humans during coronary artery bypass surgery.Am J Cardiol.1997;79:38–43.

    Article  PubMed  CAS  Google Scholar 

  44. Wasir H, Bhan A, Choudhary SK, Sharma R, Chauhan S, Venugopal P. Pretreatment of human myocardium with adenosine.Eur J Cardiothorac Surg.2001;19:41–46.

    Article  PubMed  CAS  Google Scholar 

  45. Wei M, Kuukasjarvi P, Laurikka J, Honkonen EL, Kaukinen S, Laine S, Tarkka M. Cardioprotective effect of adenosine pretreatment in coronary artery bypass grafting.Chest.2001;120:3860–3865.

    Article  Google Scholar 

  46. Ambrosio G, Jacobus WE, Mitchell MC, Litt MR, Becker LC. Effects of ATP precursors on ATP and free ADP content and functional recovery of postischemic hearts.Am J Physiol.1989;256:H560–566.

    PubMed  CAS  Google Scholar 

  47. Headrick JP, Gauthier NS, Berr SS, Morrison RR, Matherne GP. Transgenic Al adenosine receptor overexpression markedly improves myocardial energy state during ischemia-reperfusion.JMoI Cell Cardiol.1998;30:1059–1064.

    Article  CAS  Google Scholar 

  48. Sabina RL, Patterson D, Holmes EW. 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells.JBiol Chem.1985;260:6107–6114.

    CAS  Google Scholar 

  49. Glower DD, Spratt JA, Newton JR, Wolfe JA, Rankin JS, Swain JL. Dissociation between early recovery of regional function and purine nucleotide content in postischaemic myocardium in the conscious dog.Cardiovasc Res.1987;21:328–336.

    Article  PubMed  CAS  Google Scholar 

  50. Mentzer RMJ, Ely SW, Lasley RD, Berne RM. The acute effects of AICAR on purine nucleotide metabolism and postischemic cardiac function.J Thorac Cardiovasc Surg.1988;95:286–293.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ingwall, J.S. (2002). Degradation and Synthesis of ATP. In: ATP and the Heart. Basic Science for the Cardiologist, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1093-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1093-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5391-1

  • Online ISBN: 978-1-4615-1093-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics