Skip to main content

Integration of ATP Synthesis and ATP Utilization Pathways

  • Chapter
ATP and the Heart

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 11))

Abstract

The chemistry and biology of ATP described in Parts I – IV of this monograph provide a framework for understanding the molecular and cell biology, biochemistry, physiology and pathophysiology of the heart. From the viewpoint of the energetics of the heart, all of these converge to just one: biochemistry. The biology of the energetics of the normal and diseased heart rests on the difference between ATP content and ATP turnover. The absence of a change in the ATP concentration does not necessarily mean that the rates of ATP synthesis and utilization remain the same. Instead, it means that the sum of any and all changes in the sources and sinks for ATP remains the same. Nor does it necessarily mean that the relative contributions of different metabolic pathways to overall ATP utilization or overall ATP synthesis remain the same. The different pathways for ATP synthesis and utilization can, and do, integrate differently. These pathways can also undergo molecular remodelling. Examples of this are isozyme switches and changes in the capacity of entire pathways during maturation and in response to stresses such as ischemia and sustained increased work. Furthermore, the carbon-based substrates used for ATP synthesis are not constant. The fuels that the heart uses to maintain a constant ATP concentration do not stay the same even during the course of a day, but vary as we undergo multiple fed/fasting cycles. Importantly, fluxes through existing pathways for ATP synthesis can change rapidly in response to fuel supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ingwall JS, Kramer MF, Friedman WF. Developmental changes in heart creatine kinase. In: Jacobus WE, Ingwall JS, eds.Heart Creatine Kinase.Baltimore: Williams and Wilkins; 1980:9–17.

    Google Scholar 

  2. Stanley WC. Cardiac energetics during ischaemia and the rationale for metabolic interventions.Coron Artery Dis.2001;12:S3–7.

    Google Scholar 

  3. Makinde AO, Kantor PF, Lopaschuk GD. Maturation of fatty acid and carbohydrate metabolism in the newborn heart.Mol Cell Biochem.1998;188:49–56.

    Article  PubMed  CAS  Google Scholar 

  4. Sasaki N, Sato T, Marban E, O'Rourke B. ATP consumption by uncoupled mitochondria activates sarcolemmal K(ATP) channels in cardiac myocytes.Am J Physiol Heart Circ Physiol.2001;280:H1882–1888.

    PubMed  CAS  Google Scholar 

  5. Depre C, Shipley GL, Chen W, Han Q, Doenst T, Moore ML, Stepkowski S, Davies Pi, Taegtmeyer H. Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy.Nat Med.1998;4:269–275.

    Article  Google Scholar 

  6. Johannsson E, Lunde PK, Heddle C, Sjaastad I, Thomas MJ, Bergersen L, Halestrap AP, Blackstad TW, Ottersen OP, Sejersted OM. Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat model of congestive heart failure.Circulation.2001;104:729–734.

    Article  PubMed  CAS  Google Scholar 

  7. Shen W, Asai K, Uechi M, Mathier MA, Shannon RP, Vatner SF, Ingwall JS. Progressive loss of myocardial ATP due to a loss of total purines during the development of heart failure in dogs: a compensatory role for the parallel loss of creatine.Circulation.1999;100:2113–2118.

    Article  PubMed  CAS  Google Scholar 

  8. Dzeja PP, Vitkevicius KT, Redfield MM, Burnett JC, Terzic A. Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure.Circ Res.1999;84:1137–1143.

    Article  PubMed  CAS  Google Scholar 

  9. Ingwall JS, Neubauer S. The energetics of the failing heart.Heart failure reviews.1999;4.

    Google Scholar 

  10. Bishop SP, Altschuld RA. Increased glycolytic metabolism in cardiac hypertrophy and congestive failure.Am JPhysiol.1970;218:153–159.

    CAS  Google Scholar 

  11. Ingwall JS, Badke FR, Pavelec RS, Covell JW. Alterations in creatine phosphokinase activity and isoenzyme composition in the volume loaded, hypertrophied heart.Circulation1976;54 (Suppl II):59.

    Google Scholar 

  12. Lompre AM, Schwartz K, d'Albis A, Lacombe G, Van Thiem N, Swynghedauw B. Myosin isoenzyme redistribution in chronic heart overload.Nature.1979;282:105–107.

    Article  CAS  Google Scholar 

  13. Smith SH, Kramer MF, Reis I, Bishop SP, Ingwall JS. Regional changes in creatine kinase and myocyte size in hypertensive and nonhypertensive cardiac hypertrophy.Circ Res.1990;67:1334–1344.

    Article  PubMed  CAS  Google Scholar 

  14. Perez NG, Hashimoto K, McCune S, Altschuld RA, Marban E. Origin of contractile dysfunction in heart failure: calcium cycling versus myofilaments.Circulation.1999;99:1077–1083.

    Article  PubMed  CAS  Google Scholar 

  15. Bittl JA, Balschi JA, Ingwall JS. Contractile failure and high-energy phosphate turnover during hypoxia: 31P-NMR surface coil studies in living rat.Circ Res.1987;60:871–878.

    Article  PubMed  CAS  Google Scholar 

  16. Bittl JA, Ingwall JS. The energetics of myocardial stretch. Creatine kinase flux and oxygen consumption in the noncontracting rat heart.Circ Res.1986;58:378–383.

    Article  PubMed  CAS  Google Scholar 

  17. Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA, Carling D. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle.EMBOJ.1998;17:1688–1699.

    Article  CAS  Google Scholar 

  18. Cave AC, Ingwall JS, Friedrich J, Liao R, Saupe KW, Apstein CS, Eberli RF. ATP synthesis during low-flow ischemia: influence of increased glycolytic substrate.Circulation.2000;101:2090–2096.

    Article  PubMed  CAS  Google Scholar 

  19. Schaefer S, Can LT, Kreutzer U, Jue T. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery.Cardiovasc Res.1993;27:2044–2051.

    Article  PubMed  CAS  Google Scholar 

  20. Tian R, Musi N, D'Agostino J, Hirshman MF, Goodyear LJ. Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy.Circulation.2001;104:1664–1669.

    Article  PubMed  CAS  Google Scholar 

  21. Hardie DG, Hawley SA. AMP-activated protein kinase: the energy charge hypothesis revisited.Bioessays.2001;23:1112–1119.

    Article  PubMed  CAS  Google Scholar 

  22. Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis.Am J Physiol Endocrinol Metab.2001;281:E1340–1346.

    PubMed  CAS  Google Scholar 

  23. Makinde AO, Gamble J, Lopaschuk GD. Upregulation of 5'-AMP-activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rates following birth in the newborn rabbit.Circ Res.1997;80.

    Google Scholar 

  24. Frederick M, Balschi JA. The relationship between AMP-activated protein kinase activity and AMP concentration in the isolated perfused rat heart.j Biol Chem.2002;277:1928–1932.

    Article  Google Scholar 

  25. Blair E, Redwood C, Ashrafian H, Oliveira M, Broxholme J, Kerr B, Salmon A, Ostman-Smith I, Watkins H. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis.Hum Mol Genet.2001;10:1215–1220.

    Article  PubMed  CAS  Google Scholar 

  26. Arad M, Benson DW, Perez-Atayde AR, McKenna WJ, Sparks EA, Kanter RJ, McGarry K, Seidman JG, Seidman CE. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy.J Clin Invest.2002;109:357–362.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ingwall, J.S. (2002). Integration of ATP Synthesis and ATP Utilization Pathways. In: ATP and the Heart. Basic Science for the Cardiologist, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1093-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1093-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5391-1

  • Online ISBN: 978-1-4615-1093-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics