A molecular phenotype atlas of the zebrafish retina

  • Robert E. Marc
  • David Cameron


The rasborine cyprinid Danio rerio (the zebrafish) has become a popular model of retinal function and development. Its value depends, in part, on validation of homologies with retinal cell populations of cyprinine cyprinids. This atlas provides raw and interpreted molecular phenotype data derived from computationally classified sets of small molecule signals from different cell types in the zebrafish retina: L-alanine, L-aspartate, L-glutamine, L-glutamate, glutathione, glycine, taurine and γ-aminobutyrate. This basis set yields an 8-dimensional signature for every retinal cell and formally establishes molecular signature homologies with retinal neurons, glia, epithelia and endothelia of other cyprinids. Zebrafish photoreceptor classes have been characterized previously: we now show their metabolic profiles to be identical to those of the corresponding photoreceptors in goldfish. The inner nuclear layer is partitioned into precise horizontal, bipolar and amacrine cell layers. The horizontal cell layer contains at least three and perhaps all four known classes of cyprinine horizontal cells. Homologues of cyprinid glutamatergic ON-center and OFF-center mixed rod-cone bipolar cells are present and it appears likely that all five classes are present in zebrafish. The cone bipolar cells defy simple analysis but comprise the largest fraction of bipolar cells, as in all cyprinids. Signature analysis reveals six molecular phenotypes in the bipolar cell cohort: most are superclasses. The amacrine cell layer is composed of ≈64% GABA+ and 35% glycine+ amacrine cells, with the remainder being sparse dopaminergic interplexiform cells and other rare unidentified neurons. These different amacrine cell types are completely distinct in the dark adapted retina, but light adapted retinas display weak leakage of GABA signals into many glycinergic amacrine cells, suggesting widespread heterocellular coupling. The composition of the zebrafish ganglion cell layer is metabolically indistinguishable from that in other cyprinids, and the signatures of glial and non-neuronal cells display strong homologies with those in mammals. As in most vertebrates, zebrafish Müller cells possess a high glutamine, low glutamate signature and contain the dominant pool of glutathione in the neural retina. The retinal pigmented epithelium shows a general mammalian signature but also has exceptional glutathione content (5–10 mM), perhaps required by the unusually high oxygen tensions of teleost retinas. The optic nerve and the marginal zone of the retina reveal characteristic metabolic specializations. The marginal zone is strongly laminated and its nascent neurons display their characteristic signatures before taking their place in the retina proper.


Marginal Zone Bipolar Cell Amacrine Cell Plexiform Layer Horizontal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammermuller, J. & Weiler, R. (1981) The ramification pattern of amacrine cells within the inner plexiform layer of the carp retina. Cell & Tissue Research 220, 699–723.Google Scholar
  2. Ball, G. & Hall, D. (1967) Clustering technique for summarizing multivariate data. Behavioral Science 12, 153–155.PubMedCrossRefGoogle Scholar
  3. Brandon, C. (1985) Retinal GABA neurons: Localization in vertebrate species using an antiserum to rabbit brain glutamate decarboxylase. Brain Research 344, 286–295.PubMedCrossRefGoogle Scholar
  4. Cameron, D. A. (2000) Cellular proliferation and neurogenesis in the injured retina of adult zebrafish. Visual Neuroscience 17, 789–797.PubMedCrossRefGoogle Scholar
  5. Cameron, D. A. & Carney, L. H. (2000) Cell mosaic patterns in the native and regenerated inner retina of zebrafish: Implications for retinal assembly. Journal of Com-parative Neurology 416, 356–367.CrossRefGoogle Scholar
  6. Cameron, D. A. & Powers, M. K. (2000) Morphology and visual pigment content of photoreceptors from injured goldfish retina. Visual Neuroscience 17, 623–630.PubMedCrossRefGoogle Scholar
  7. Carroll, R. (1988) Vertebrate Paleontology and Evolution. New York: W. H. Freeman and Company.Google Scholar
  8. Connaughton, V. P., Behar, T. N., Liu, W. L. & Massey, S. C. (1999) Immunocytochemicallocalization of excitatory and inhibitory neurotransmitters in the zebrafish retina. Visual Neuroscience 16, 483–90.PubMedCrossRefGoogle Scholar
  9. Cook, J. E. (1996) Spatial properties of retinal mosaics: An empirical evaluation of some existing measures. Visual Neuroscience 13, 15–30.PubMedCrossRefGoogle Scholar
  10. Djamgoz, M. B. A., Wagner, H. J. & Witkovsky, P. (1995) Photoreceptor-horizontal cell connectivity, synaptic transmission and neuromodulation. In Neurobiology and Clinical Aspects of the Outer Retina (edited by Djamgoz, M., Archer, S. & Vallerga, S.) pp. 155–193. London: Chapman and Hall.CrossRefGoogle Scholar
  11. Easter, S. S., Rusoff, A. C. & Kish, P. E. (1981) The growth and organization of the optic nerve and tract in juvenile and adult goldfish. Journal of Neuroscience 1, 793–811.PubMedGoogle Scholar
  12. Famiglietti, E. V. JR., Kaneko, A. & Tachibana, M. (1975) Neuronal architecture of on and off pathway to ganglion cells in carp retina. Science (Washington DC) 198, 1267–1269.CrossRefGoogle Scholar
  13. Fletcher, E. L. & Kalloniatis, M. (1996) Neurochemical architecture of the normal and degenerating rat retina. Journal of Comparative Neurology 376, 343–360.PubMedCrossRefGoogle Scholar
  14. Fonner, D. B., Hoffert, J. R. & Fromm, P. O. (1973) The importance of the counter current oxygen multiplier mechanism in maintaining retinal function in the teleost. Comparative Biochemistry & Physiology A—Comparative Physiology 46, 559–567.CrossRefGoogle Scholar
  15. Hitchcock, P. F. & Easter, S. S. (1986) Retinal ganglion cells in goldfish: A qualitative classification into four morphological types, and a quantitative study of the development of one of them. Journal of Neuroscience 6, 1037–1050.PubMedGoogle Scholar
  16. Holmes, R. P. & Assimos, D. G. (1998) Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. Journal of Urology 160, 1617–1624.PubMedCrossRefGoogle Scholar
  17. Inselberg, A. & Dimsdale, B. (1990) Parallel coordinates: A tool for visualizing multidimensional geometry. Proceedings of the First IEEE Conference on Visualization 1, 361–375.CrossRefGoogle Scholar
  18. Ishida, A., Stell, W. & Lightfoot, D. (1980a) Rod and cone inputs to bipolar cells in goldfish retina. Journal of Comparative Neurology 191, 315–335.PubMedCrossRefGoogle Scholar
  19. Ishida, A. T., Stell, W. K. & Lightfoot, D. O. (1980b) Rod and cone inputs to bipolar cells in goldfish retina. Journal of Comparative Neurology 191, 315–335.PubMedCrossRefGoogle Scholar
  20. Johns, P. R. (1977) Growth of the adult goldfish eye. III. Source of the new retinal cells. Journal of Comparative Neurology 176, 343–357.PubMedCrossRefGoogle Scholar
  21. Johnson, J., Chen, T. K., Rickman, D. W., Evans, C. & Brecha, N. C. (1996) Multiple gamma-Aminobutyric acid plasma membrane transporters (GAT-1, GAT-2, GAT-3) in the rat retina. Journal of Comparative Neurology 375, 212–224.PubMedCrossRefGoogle Scholar
  22. Jones, B. W., Howard, J., Beg, A., Watt, C. B. & Marc, R. E. (1999) Ionotropic glutamatergic drive histories of amacrine cell layer neurons reported by l-amino-4-guanidobutane (AGB) in vivo. Investigative Ophthalmology and Visual Science 40, S440.Google Scholar
  23. Kalloniatis, M. & Fletcher, E. L. (1993) Immunocytochemical localization of the amino acid neurotransmitters in the chicken retina. Journal of Comparative Neurology 336, 174–193.PubMedCrossRefGoogle Scholar
  24. Kalloniatis, M. & Marc, R. E. (1990) Interplexiform cells of the goldfish retina. Journal of Comparative Neurology 297, 340–358.PubMedCrossRefGoogle Scholar
  25. Kalloniatis, M., Marc, R. E. & Murry, R. F. (1996) Amino acid signatures in the primate retina, [erratum appears in J Neurosci 1997 Jan 1; 17(1), 500–503]. Journal of Neuroscience 16, 6807–6829.PubMedGoogle Scholar
  26. Kalloniatis, M. & Napper, G. A. (1996) Glutamate metabolic pathways in displaced ganglion cells of the chicken retina. Journal of Comparative Neurology 367, 518–536.PubMedCrossRefGoogle Scholar
  27. Kalloniatis, M. & Tomisich, G. (1999) Amino acid neurochemistry of the vertebrate retina. Progress in Retinal & Eye Research 18, 811–866.CrossRefGoogle Scholar
  28. Kalloniatis, M., Tomisich, G. & Marc, R. E. (1994) Neurochemical signatures revealed by glutamine labeling in the chicken retina. Visual Neuroscience 11, 793–804.PubMedCrossRefGoogle Scholar
  29. Kamermans, M., Fahrenfort. L, Schultz, K., Janssen-Bienhold, U., Sjoerdsma, T. & Weiler, R. (2001) Hemichannel-mediated inhibition in the outer retina. Science 292, 1178–1180.PubMedCrossRefGoogle Scholar
  30. Kamermans, M. & Spekreijse, H. (1999) The feedback pathway from horizontal cells to cones. A mini review with a look ahead. Vision Research 39, 2449–2468.PubMedCrossRefGoogle Scholar
  31. Lam, D. M., Su, Y. Y., Swain, L., Marc, R. E., Brandon, C. & Wu, J. Y. (1979) Immunocytochemical localisation of L-glutamic acid decarboxylase in the goldfish retina. Nature 278, 565–567.PubMedCrossRefGoogle Scholar
  32. Lee, I. S., Nishikimi, M., Inoue, M., Muragaki, Y. & Ooshima, A. (1999) Specific expression of alanineglyoxylate aminotransferase 2 in the epithelial cells of Henle’s loop. Nephron 83, 184–185.PubMedCrossRefGoogle Scholar
  33. Li, X. M., Salido, E. C. & Shapiro, L. J. (1999) The mouse alanine: Glyoxylate aminotransferase gene (Agxt1): Cloning, expression, and mapping to chromosome 1. Somatic Cell & Molecular Genetics 25, 67–77.CrossRefGoogle Scholar
  34. Macneil, M. A., Heussy, J. K., Dacheux, R. F., Raviola, E. & Masland, R. H. (1999) The shapes and numbers of amacrine cells: Matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. Journal of Comparative Neurology 413, 305–326.PubMedCrossRefGoogle Scholar
  35. Marc, R., Li, H.-B., Kalloniatis, M. & Arnold, J. (1993) Cholinergic subsets of GABAergic amacrine cells in the goldfish retina. Investigative Ophthalmology and Visual Science 34, S1061.Google Scholar
  36. Marc, R. E. (1982) Chromatic organization of the retina. In Cellular Aspects of the Eye (edited by McDevitt, D.) pp. 435–473. NY: Academic Press.CrossRefGoogle Scholar
  37. Marc, R. E. (1986) Neurochemical stratification in the inner plexiform layer of the vertebrate retina. Vision Research 26, 223–238.PubMedCrossRefGoogle Scholar
  38. Marc, R. E. (1992) Structural organization of GABAergic circuitry in ectotherm retinas. Progress in Brain Research 90, 61–92.PubMedCrossRefGoogle Scholar
  39. Marc, R. E. (1999a) Mapping glutamatergic drive in the vertebrate retina with a channel-permeant organic cation. Journal of Comparative Neurology 407, 47–64.PubMedCrossRefGoogle Scholar
  40. Marc, R. E. (1999b) The structure of vertebrate retinas. In The Retinal Basis of Vision (edited by Toyoda, J.-L, Murkami, M., Kaneko, A. & Saito, T.) pp. 3–19. Amsterdam: Elsevier.Google Scholar
  41. Marc, R. E. & Jones, B. W. (2002) Molecular phenotyping of retinal ganglion cells. Journal of Neuroscience 22, 413–427.PubMedGoogle Scholar
  42. Marc, R. E. & Lam, D. M. K. (1981) Glycinergicpathways in the goldfish retina. Journal of Neuroscience 1, 152–165.PubMedGoogle Scholar
  43. Marc, R. E. & Liu, W. L. (1984) Horizontal cell synapses onto glycineaccumulating interplexiform cells. Nature 312, 266–269.PubMedCrossRefGoogle Scholar
  44. Marc, R. E. & Liu, W. (2000) Fundamental GABAergic amacrine cell circuitries in the retina: Nested feedback, concatenated inhibition, and axosomatic synapses. Journal of Comparative Neurology 425, 560–582.PubMedCrossRefGoogle Scholar
  45. Marc, R. E., Liu, W. L., Kalloniatis, M., Raiguel, S. F. & Van Haesendonck, E. (1990) Patterns of glutamate immunoreactivity in the goldfish retina. Journal of Neuroscience 10, 4006–4034.PubMedGoogle Scholar
  46. Marc, R. E., Liu, W. L. & Müller, J. F. (1988a) Gap junctions in the inner plexiform layer of the goldfish retina. Vision Research 28, 9–24.PubMedGoogle Scholar
  47. Marc, R. E., Liu, W. L., Scholz, K. & Müller, J. F. (1988b) Serotonergic and serotonin-accumulating neurons in the goldfish retina. Journal of Neuroscience 8, 3427–3450.PubMedGoogle Scholar
  48. Marc, R. E., Murry, R. F. & Basinger, S. F. (1995) Pattern recognition of amino acid signatures in retinal neurons. Journal of Neuroscience 15, 5106–5129.PubMedGoogle Scholar
  49. Marc, R. E., Murry, R. F., Fisher, S. K., Linberg, K. A. & Lewis, G. P. (1998a) Amino acid signatures in the detached cat retina. Investigative Ophthalmology & Visual Science 39, 1694–1702.Google Scholar
  50. Marc, R. E., Murry, R. F., Fisher, S. K., Linberg, K. A., Lewis, G. P. & Kalloniatis, M. (1998b) Amino acid signatures in the normal cat retina. Investigative Ophthalmology & Visual Science 39, 1685–1693.Google Scholar
  51. Marc, R. E., Stell, W. K., Bok, D. & Lam, D. M. (1978) GABAergic pathways in the goldfish retina. Journal of Comparative Neurology 182, 221–244.PubMedCrossRefGoogle Scholar
  52. Marc, R. E. & Sperling, H. G. (1976) Color receptor identities of goldfish cones. Science 191, 487–489.PubMedCrossRefGoogle Scholar
  53. Marc, R. E. & Sperling, H. G. (1977) The chromatic organization of the goldfish cone mosaic. Vision Research 16, 1211–1224.CrossRefGoogle Scholar
  54. Marcus, R. C, Delaney, C. L., & Easter, S. S., JR. (1999) Neurogenesis in the visual system of embryonic and adult zebrafish (Danio rerio). Visual Neuroscience 16, 417–24.Google Scholar
  55. Marshak, D. W. & Dowling, J. E. (1987) Synapses of cone horizontal cell axons in goldfish retina. Journal of Comparative Neurology 256, 430–43.PubMedCrossRefGoogle Scholar
  56. Marshak, D. W., Yamada, T. & Stell, W. K. (1982) Synaptic contacts of somatostatin immuno reactive amacrine cells in goldfish retina. Journal of Comparative Neurology 225, 44–52.CrossRefGoogle Scholar
  57. Massey, S. C, Mills, S. L. & Marc, R. E. (1992) All indoleamine-accumulating cells in the rabbit retina contain GABA. Journal of Comparative Neurology 322, 275–291.PubMedCrossRefGoogle Scholar
  58. Michal, G. (1999) Amino acids and derivatives. In Biochemical Pathways (edited by Michal, G.) pp. 46–67. NY: Wiley & Sons.Google Scholar
  59. Miyachi, E., Hidaka, S. & Murkami, M. (1999) Electrical couplings of retinal neurons. In (edited by Toyoda, J.-L, Murakami, M., Kaneko, A. & Saito, T.) pp. 171–184. Amsterdam: Elsevier.Google Scholar
  60. Moeckel, G. W., Lai, L. W., Guder, W. G., Kwon, H. M. & Lien, Y. H. (1997) Kinetics and osmoregulation of Na+- and CI- -dependent betaine transporter in rat renal medulla. American Journal of Physiology 272, F100–106.PubMedGoogle Scholar
  61. Morimura, H., Shimada, S., Otori, Y., Saishin, Y., Yamauchi, A., Minami, Y., Inoue, K., Ishimoto, L, Tano, Y. & Tohyama, M. (1997) The differential osmoregulation and localization of taurine transporter mRNA and Na+/myoinositol cotransporter mRNA in rat eyes. Brain Research Molecular Brain Research 44, 245–252.PubMedCrossRefGoogle Scholar
  62. Mosinger, J. L. & Yazulla, S. (1985) Colocalization of GAD-like immunoreactivity and 3H-GABA uptake in amacrine cells of rabbit retina. Journal of Comparative Neurology 240, 396–06.PubMedCrossRefGoogle Scholar
  63. Mosinger, J. L., Yazulla, S. & Studholme, K. M. (1986) GABA-like immunoreactivity in the vertebrate retina: A species comparison. Experimental Eye Research 42, 631–644.PubMedCrossRefGoogle Scholar
  64. Naka, K. I. & Christensen, B. N. (1981) Direct electrical connections between transient amacrine cells in the catfish retina. Science 214, 462–64.PubMedCrossRefGoogle Scholar
  65. Pow, D. V. (1998) Transport is the primary determinant of glycine content in retinal neurons. Journal of Neurochemistry 70, 2628–2636.PubMedCrossRefGoogle Scholar
  66. Pow, D. V. & Crook, D. K. (1996) Direct immunocytochemical evidence for the transfer of glutamine from glial cells to neurons: Use of specific antibodies directed against the d-stereoisomers of glutamate and glutamine. Neuroscience 70, 295–302.PubMedCrossRefGoogle Scholar
  67. Pow, D. V. & Robinson, S. R. (1994) Glutamate in some retinal neurons is derived solely from glia. Neuroscience 60, 355–366.PubMedCrossRefGoogle Scholar
  68. Raymond, P. A. (1990) Horizontal cell axon terminals in growing goldfish. Experimental Eye Research 51, 675–683.PubMedCrossRefGoogle Scholar
  69. Raymond, P. A., Barthel, L. K., Rounsifer, M. E., Sullivan, S. A. & Knight, J. K. (1993) Expression of rod and cone visual pigments in goldfish and zebrafish: A rhodopsin-like gene is expressed in cones. Neuron 10, 1161–1174.PubMedCrossRefGoogle Scholar
  70. Roberts, M. F. (2000) Osmoadaptation and osmoregulation in archaea. Frontiers in Bioscience 5, D796–D812.PubMedCrossRefGoogle Scholar
  71. Robinson, J., Schmitt, E. A., Harosi, F. I., Reece, R. J. & Dowling, J. E. (1993) Zebrafish ultraviolet visual pigment: Absorption spectrum, sequence, and localization. Proceedings of the National Academy of Sciences of the United States of America 90, 6009–6012.PubMedCrossRefGoogle Scholar
  72. Sakai, H. M. & Naka, K. (1988) Dissection of the neuron network in the catfish inner retina. II. Interactions between ganglion cells. Journal of Neurophysiology 60, 1568–1583.PubMedGoogle Scholar
  73. Sandell, J. H. & Masland, R. H. (1989) Indoleamine accumulation by retinal neurons exposed to blood. Histochemistry 92, 57–60.PubMedCrossRefGoogle Scholar
  74. Sandell, J. H., Masland, R. H., Raviola, E. & Dacheux, R. F. (1989) Connections of indoleamineaccumulating cells in the rabbit retina. Journal of Comparative Neurology 283, 303–313.PubMedCrossRefGoogle Scholar
  75. Schaffer, S., Takahashi, K. & Azuma, J. (2000) Role of osmoregulation in the actions of taurine. Amino Acids 19, 527–546.PubMedCrossRefGoogle Scholar
  76. scholes, J. H. (1975) Colour receptors, and their synaptic connexions, in the retina of a cyprinid fish. Philosophical Transactions of the Royal Society of London—Series B: Biological Sciences 270, 61–118.PubMedCrossRefGoogle Scholar
  77. scholes, J. & morris, J. (1973) Receptor—bipolar connectivity patterns in fish retina. Nature 241, 52–54.PubMedCrossRefGoogle Scholar
  78. Sherry, D. M. & Yazulla, S. (1992) Goldfish bipolar cells and axon terminal patterns: A Golgi study. Journal of Comparative Neurology.Google Scholar
  79. Stell, W. K. (1965) Correlation of retinal cytoarchitecture and ultrastructure in Golgi preparations. Anatomical Record 153, 389–397.PubMedCrossRefGoogle Scholar
  80. Stell, W. K. (1967) The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. American Journal of Anatomy 111, 401–423.CrossRefGoogle Scholar
  81. Stell, W. K. (1975) Horizontal cell axons and axon terminals in goldfish retina. Journal of Comparative Neurology 159, 503–520.PubMedCrossRefGoogle Scholar
  82. Stell, W. K. & Harosi, F. I. (1975) Cone structure and visual pigment content in the retina of the goldfish. Vision Research 16, 647–657.CrossRefGoogle Scholar
  83. Stell, W. K. & Lightfoot, D. O. (1975) Colorspecific interconnections of cones and horizontal cells in the retina of the goldfish. Journal of Comparative Neurology 159, 473–502.PubMedCrossRefGoogle Scholar
  84. Stenkamp, D. L., Powers, M. K., Carney, L. H. & Cameron, D. A. (2001) Evidence for two distinct mechanisms of neurogenesis and cellular pattern formation in regenerated goldfish retinas. Journal of Comparative Neurology 431, 363–381.PubMedCrossRefGoogle Scholar
  85. Studholme, K. M. & Yazulla, S. (1988) Localization of GABA and glycine in goldfish retina by electron microscopic postembedding immunocytochemistry: Improved visualization of synaptic structures with LR white resin. Journal ofNeurocytology 17, 859–870.CrossRefGoogle Scholar
  86. Tumosa, N., Eckenstein, F. & Stell, W. K. (1984) Immunocytochemical localization of putative cholinergic neurons in the goldfish retina. Neuroscience Letters 48, 255–259.PubMedCrossRefGoogle Scholar
  87. Tumosa, N. & Stell, W. K. (1986) Choline acetyltransferase immunoreactivity suggests that ganglion cells in the goldfish retina are not cholinergic. Journal of Comparative Neurology 244, 267–275.PubMedCrossRefGoogle Scholar
  88. Van Haesendonck, E., Marc, R. E. & Missotten, L. (1993) New aspects of dopaminergic interplexiform cell organization in the goldfish retina. Journal of Comparative Neurology 333, 503–518.PubMedCrossRefGoogle Scholar
  89. Verweij, J., Kamermans, M., Negishi, K. & Spekreijse, H. (1998) GABA sensitivity of spectrally classified horizontal cells in goldfish retina. Visual Neuroscience 15, 77–86.PubMedCrossRefGoogle Scholar
  90. Wagner, H. J. & Wagner, E. (1988) Amacrine cells in the retina of a teleost fish, the roach (Rutilus rutilus): A Golgi study on differentiation and layering. Philosophical Transactions of the Royal Society of London—Series B: Biological Sciences 321, 263–324.PubMedCrossRefGoogle Scholar
  91. Watt, C. B., Kalloniatis, M., Jones, B. W. & Marc, R. E. (2000) Studies examining the neurotransmitter properties of horizontal cell populations in the goldfish retina. Investigative Ophthalmology and Visual Science 41, S943.Google Scholar
  92. Yang, C. Y. & Yazulla, S. (1988) Localization of putative GABAergic neurons in the larval tiger salamander retina by immunocytochemical and autoradiographic methods. Journal of Comparative Neurology 277, 96–108.PubMedCrossRefGoogle Scholar
  93. Yazulla, S. (1981) Gamma aminobutyric-acid-ergic synapses in the goldfish carassiusauratus retina an auto radiographic study of tritium labeled muscimol and tritium labeled gamma aminobutyricacid binding. Journal of Comparative Neurology 200, 83–94.PubMedCrossRefGoogle Scholar
  94. Yazulla, S. (1991) The mismatch problem for gabaergic amacrine cells in goldfish retina resolution and other issues. Neurochemical Research.Google Scholar
  95. Yazulla, S., Mosinger, J. & Zucker, C. (1984) Two types of pyriform Ab amacrine cells in the goldfish retina: An EM analysis of [3H]GABA uptake and somatostatin-like immunoreactivity. Brain Research 321, 352–356.PubMedCrossRefGoogle Scholar
  96. Yazulla, S. & Studholme, K. M. (1991) Glycinergic interplexiform cells make synaptic contact with amacrine cell bodies in goldfish retina. Journal of Comparative Neurology 310, 1–10.PubMedCrossRefGoogle Scholar
  97. Yazulla, S., Studholme, K. & Wu, J. Y. (1986) Comparative distribution of 3H-GABA uptake and GAD immunoreactivity in goldfish retinal amacrine cells: A double-label analysis. Journal of Comparative Neurology 244, 149–162.PubMedCrossRefGoogle Scholar
  98. Yazulla, S., Studholme, K. M. & Wu, J. Y. (1987) GABAergic input to the synaptic terminals of mb1 bipolar cells in the goldfish retina. Brain Research 411, 400–405.PubMedCrossRefGoogle Scholar
  99. Yazulla, S., Studholme, K. M. & Zucker, C. L. (1985) Synaptic organization of substance P-like immunoreactive amacrine cells in goldfish retina. Journal of Comparative Neurology 231, 232–238.PubMedCrossRefGoogle Scholar
  100. Yazulla, S. & Zucker, C. L. (1988) Synaptic organization of dopaminergic interplexiform cells in the goldfish retina. Visual Neuroscience 1, 13–29.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Robert E. Marc
    • 1
  • David Cameron
    • 2
  1. 1.John Moran Eye Center, Department of OphthalmologyUniversity of Utah School of MedicineSalt Lake CityUSA
  2. 2.Department of Neuroscience and PhysiologySUNY Upstate Medical UniversitySyracuseUSA

Personalised recommendations