The role of nitric oxide in lung innate immunity: Modulation by surfactant protein-A

  • Philip O’Reilly
  • Judy M. Hickman-Davis
  • Philip McArdle
  • K. Randall Young
  • Sadis Matalon
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 37)


Surfactant protein A (SP-A) and alveolar macrophages are essential components of lung innate immunity. Alveolar macrophages phagocytose and kill pathogens by the production of reactive oxygen and nitrogen species. In particular, peroxynitrite, the reaction product of superoxide and nitric oxide, appears to have potent antimicrobial effects. SP-A stimulates alveolar macrophages to phagocytose and kill pathogens and is important in host defense. However, SP-A has diverse effects on both innate and adaptive immunity, and may stimulate or inhibit immune function. SP-A appears to mediate toxic or protective effects depending on the immune status of the lung. In contrast to mouse or rat cells, it has been difficult to demonstrate nitric oxide production by human macrophages. We have recently demonstrated that human macrophages produce nitric oxide and use it to killKlebsiella pneumoniae.SP-A either stimulates or inhibits this process, depending on the activation state of the macrophage. Given its diverse effects on immune function, SP-A may prove to be an effective therapy for both infectious and inflammatory diseases of the lung. (Mol Cell Biochem 234/235: 39–48,2002)

Key words

lung innate immunity nitric oxide surfactant protein-A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hickman-Davis JM, Michalek SM, Gibbs-Erwin J, Lindsey JR: Depletion of alveolar macrophages exacerbates respiratory mycoplasmosis in mycoplasma-resistant C57BL mice but not mycoplasma-susceptible C3H mice. Infect Immun 65: 2278–2282, 1997PubMedGoogle Scholar
  2. 2.
    Broug-Holub E, Toews GB, Van Iwaarden JF, Strieter RM, Kunkel SL, Paine R, Standiford TJ: Alveolar macrophages are required for protective pulmonary defenses in murineKlebsiella pneumonia:Elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infect Immun 65: 1139–1146, 1997PubMedGoogle Scholar
  3. 3.
    Crouch EC: Collectins and pulmonary host defense. Am J Respir Cell Mol Biol 19: 177–201, 1998PubMedGoogle Scholar
  4. 4.
    Crouch E, Wright JR: Surfactant proteins a and d and pulmonary host defense. Annu Rev Physiol 63: 521–554, 2001PubMedCrossRefGoogle Scholar
  5. 5.
    Wright JR: Immunomodulatory functions of surfactant. Physiol Rev 77: 931–962, 1997PubMedGoogle Scholar
  6. 6.
    Hakansson K, Reid KB: Collectin structure: A review. Protein Sci 9: 1607–1617, 2000PubMedCrossRefGoogle Scholar
  7. 7.
    Kuroki Y, Voelker DR: Pulmonary surfactant proteins. J Biol Chem 269: 25943–25946, 1994PubMedGoogle Scholar
  8. 8.
    Hickman-Davis JM, Lindsey JR, Zhu S, Matalon S: Surfactant protein A mediates mycoplasmacidal activity of alveolar macrophages. Am J Physiol 274: L270–L277, 1998PubMedGoogle Scholar
  9. 9.
    Hickman-Davis J, Gibbs-Erwin J, Lindsey JR, Matalon S: Surfactant protein A mediates mycoplasmacidal activity of alveolar macrophages by production of peroxynitrite. Proc Natl Acad Sci USA 96: 4953–4958, 1999PubMedCrossRefGoogle Scholar
  10. 10.
    Kabha K, Schmegner J, Keisari Y, Parolis H, Schlepper-Schaeffer J, Ofek I: SP-A enhances phagocytosisofKlebsiellaby interaction with capsular polysaccharides and alveolar macrophages. Am J Physiol 272: L344–L352, 1997PubMedGoogle Scholar
  11. 11.
    Tino MJ, Wright JR: Surfactant protein A stimulates phagocytosis of specific pulmonary pathogens by alveolar macrophages. Am J Physiol 270: L677–L688, 1996Google Scholar
  12. 12.
    Williams MD, Wright JR, March KL, Martin WJ: Human surfactant protein A enhances attachmentofPneumocystis cariniito rat alveolar macrophages. Am J Respir Cell Mol Biol 14: 232–238, 1996PubMedGoogle Scholar
  13. 13.
    Mariencheck WI, Savoy J, Dong Q, Tino MJ, Wright JR: Surfactant protein A enhances alveolar macrophage phagocytosis of a live, mucoid strain ofP aeruginosa.Am J Physiol 277: L777–L786, 1999PubMedGoogle Scholar
  14. 14.
    Van lwaarden JF, Shimizu H, Van Golde PH, Voelker DR, van Golde LM: Rat surfactant protein D enhances the production of oxygen radicals by rat alveolar macrophages. Biochem J 286: 5–8, 1992Google Scholar
  15. 15.
    Weissbach S, Neuendank A, Pettersson M, Schaberg T, Pison U: Surfactant protein A modulates release of reactive oxygen species from alveolar macrophages. Am J Physiol 267: L660–L666, 1994PubMedGoogle Scholar
  16. 16.
    Kremlev SG, Phelps DS: Surfactant protein A stimulation of inflammatory cytokine and immunoglobulin production. Am J Physiol 267: L712–L719, 1994PubMedGoogle Scholar
  17. 17.
    Kremlev SG, Umstead TM, Phelps DS: Surfactant protein A regulates cytokine production in the monocytic cell line THP-1. Am J Physiol 272: L996–L1004, 1997PubMedGoogle Scholar
  18. 18.
    Wright JR, Youmans DC: Pulmonary surfactant protein A stimulates chemotaxis of alveolar macrophage. Am J Physiol 264: L338–L344, 1993PubMedGoogle Scholar
  19. 19.
    Tino MJ, Wright JR: Surfactant proteins A and D specifically stimulate directed actin-based responses in alveolar macrophages. Am J Physiol 276: L164–L174, 1999PubMedGoogle Scholar
  20. 20.
    Stamme C, Walsh E, Wright JR: Surfactant protein A differentially regulates IFN-gamma-and LPS-induced nitrite production by rat alveolar macrophages. Am J Respir Cell Mol Biol 23: 772–779, 2000PubMedGoogle Scholar
  21. 21.
    LeVine AM, Bruno MD, Huelsman KM, Ross GF, Whitsett JA, Korfhagen TR: Surfactant protein A-deficient mice are susceptible to group B streptococcal infection. J Immunol 158: 4336–4340, 1997PubMedGoogle Scholar
  22. 22.
    LeVine AM, Kurak KE, Bruno MD, Stark JM, Whitsett JA, Korfhagen TR: Surfactant protein-A-deficient mice are susceptible toPseudomonas aeruginosainfection. Am J Respir Cell Mol Biol 19: 700–708, 1998PubMedGoogle Scholar
  23. 23.
    Fang FC: Perspectives series: Host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest 99: 2818–2825, 1997PubMedCrossRefGoogle Scholar
  24. 24.
    Nathan C, Shiloh MU: Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97: 8841–8848, 2000PubMedCrossRefGoogle Scholar
  25. 25.
    Moncada S, Palmer RM, Higgs EA: Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109–142, 1991PubMedGoogle Scholar
  26. 26.
    Loscalzo J, Welch G: Nitric oxide and its role in the cardiovascular system. Prog Cardiovasc Dis 38: 87–104, 1995PubMedCrossRefGoogle Scholar
  27. 27.
    McAndrew J, Patel RP, Jo H, Cornwell T, Lincoln T, Moellering D, White CR, Matalon S, Darley-Usmar V: The interplay of nitric oxide and peroxynitrite with signal transduction pathways: Implications for disease. Semin Perinatol 21: 351–366, 1997PubMedCrossRefGoogle Scholar
  28. 28.
    Bogdan C: Nitric oxide and the immune response. Nat Immunol 2: 907–916, 2001PubMedCrossRefGoogle Scholar
  29. 29.
    Kroncke KD, Fehsel K, Kolb-Bachofen V: Inducible nitric oxide synthase in human diseases. Clin Exp Immunol 113: 147–156, 1998PubMedCrossRefGoogle Scholar
  30. 30.
    De Groote MA, Fang FC: NO inhibitions: Antimicrobial properties of nitric oxide. Clin Infect Dis 21(suppl 2): S162–S165, 1995PubMedCrossRefGoogle Scholar
  31. 31.
    Adams LB, Hibbs JB Jr, Taintor RR, Krahenbuhl JL: Microbiostatic effect of murine-activated macrophages forToxoplasma gondii.Role for synthesis of inorganic nitrogen oxides from L-arginine. J Immunol 144: 2725–2729, 1990PubMedGoogle Scholar
  32. 32.
    Hickman-Davis J, O’Reilly P, Davis I, Peti-Peterdi J, Davis G, Young KR, Devlin RB, Matalon S: Surfactant protein A and nitric oxide-mediated mechanisms ofKlebsiella pneumoniaekilling by human alveolar macrophages. Am J Phys (in press)Google Scholar
  33. 33.
    Stenger S, Donhauser N, Thuring H, Rollinghoff M, Bogdan C: Reactivation of latentleishmaniasisby inhibition of inducible nitric oxide synthase. J Exp Med 183: 1501–1514, 1996PubMedCrossRefGoogle Scholar
  34. 34.
    Nicholson S, Bonecini-Almeida MdG, Lapa eSJ, Nathan C, Xie QW, Mumford R, Weidner JR, Calaycay J, Geng J, Boechat N: Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 183: 2293–2302, 1996PubMedCrossRefGoogle Scholar
  35. 35.
    Anstey NM, Weinberg JB, Hassanali MY, Mwaikambo ED, Manyenga D, Misukonis MA, Amelle DR, Hollis D, McDonald MI, Granger DL: Nitric oxide in Tanzanian children with malaria: Inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 184: 557–567, 1996PubMedCrossRefGoogle Scholar
  36. 36.
    Evans TG, Reed SS, Hibbs JBJ: Nitric oxide production in murineleishmaniasis:Correlation of progressive infection with increasing systemic synthesis of nitric oxide. Am J Trop Med Hyg 54: 486–489, 1996PubMedGoogle Scholar
  37. 37.
    Ochoa JB, Udekwu AO, Billiar TR, Curran RD, Cerra FB, Simmons RL, Peitzman AB: Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg 214: 621–626, 1991PubMedCrossRefGoogle Scholar
  38. 38.
    Flynn JL, Scanga CA, Tanaka KE, Chan J: Effects of aminoguanidine on latent murine tuberculosis. J Immunol 160: 1796–1803, 1998PubMedGoogle Scholar
  39. 39.
    Tsai WC, Strieter RM, Zisman DA, Wilkowski JM, Bucknell KA, Chen GH, Standiford TJ: Nitric oxide is required for effective innate immunity againstKlebsiella pneumoniae.Infect Immun 65: 1870–1875, 1997PubMedGoogle Scholar
  40. 40.
    Nathan C: Inducible nitric oxide synthase: What difference does it make? J Clin Invest 100: 2417–2423, 1997PubMedCrossRefGoogle Scholar
  41. 41.
    Bogdan C, Rollinghoff M, Diefenbach A: Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12: 64–76, 2000PubMedCrossRefGoogle Scholar
  42. 42.
    MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF: Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94: 5243–5248, 1997PubMedCrossRefGoogle Scholar
  43. 43.
    Karupiah G, Chen JH, Mahalingam S, Nathan CF, MacMicking JD: Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice. J Exp Med 188: 1541–1546, 1998PubMedCrossRefGoogle Scholar
  44. 44.
    Gomes MS, Florido M, Pais TF, Appelberg R: Improved clearance ofMycobacterium aviumupon disruption of the inducible nitric oxide synthase gene. J Immunol 162: 6734–6739, 1999PubMedGoogle Scholar
  45. 45.
    Hickman-Davis JM, Fang FC, Nathan C, Shepherd VL, Voelker DR, Wright JR: Lung surfactant and reactive oxygen-nitrogen species: Antimicrobial activity and host-pathogen interactions. Am J Physiol Lung Cell Mol Physiol 281: L517–L523, 2001PubMedGoogle Scholar
  46. 46.
    Freeman BA, White CR, Gutierrez H, Paler-Martinez A, Tarpey MM, Rubbo H: Oxygen radical-nitric oxide reactions in vascular diseases. Adv Pharmacol 34: 45–69, 1995PubMedCrossRefGoogle Scholar
  47. 47.
    Kim YM, Bergonia HA, Muller C, Pitt BR, Watkins WD, Lancaster JR Jr: Nitric oxide and intracellular heme. Adv Pharmacol 34: 277–291, 1995PubMedCrossRefGoogle Scholar
  48. 48.
    Gow AJ, Buerk DG, Ischiropoulos H: A novel reaction mechanism for the formation of S-nitrosothiolin vivo.J Biol Chem 272: 2841–2845, 1997PubMedCrossRefGoogle Scholar
  49. 49.
    Brunelli L, Crow JP, Beckman JS: The comparative toxicity of nitric oxide and peroxynitrite toEscherichia coll.Arch Biochem Biophys 316: 327–334, 1995PubMedCrossRefGoogle Scholar
  50. 50.
    Denicola A, Rubbo H, Rodriguez D, Radi R: Peroxynitrite-mediated cytotoxicity toTrypanosoma cruzi.Arch Biochem Biophys 304: 279–286, 1993PubMedCrossRefGoogle Scholar
  51. 51.
    Vazquez-Torres A, Jones-Carson J, Balish E: Peroxynitrite contributes to the candidacidal activity of nitric oxide-producing macrophages. Infect Immun 64: 3127–3133, 1996PubMedGoogle Scholar
  52. 52.
    Pacelli R, Wink DA, Cook JA, Krishna MC, DeGraff W, Friedman N, Tsokos M, Samuni A, Mitchell JB: Nitric oxide potentiates hydrogen peroxide-induced killing ofEscherichia colt.J Exp Med 182: 1469–1479, 1995PubMedCrossRefGoogle Scholar
  53. 53.
    De Groote MA, Granger D, Xu Y, Campbell G, Prince R, Fang FC: Genetic and redox determinants of nitric oxide cytotoxicity in aSalmonella typhimuriummodel. Proc Natl Acad Sci USA 92: 6399–6403, 1995PubMedCrossRefGoogle Scholar
  54. 54.
    Gaston B, Reilly J, Drazen JM, Fackler J, Ramdev P, Amelle D, Mullins ME, Sugarbaker DJ, Chee C, Singel DJ: Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci USA 90: 10957–10961, 1993PubMedCrossRefGoogle Scholar
  55. 55.
    Eiserich JP, Cross CE, Jones AD, Halliwell B, van der Vliet A: Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J Biol Chem 271: 19199–19208, 1996PubMedCrossRefGoogle Scholar
  56. 56.
    Hickman-Davis JM, Lindsey JR, Matalon S: Cyclophosphamide decreases nitrotyrosine formation and inhibits nitric oxide production by alveolar macrophages in mycoplasmosis. Infect Immun 69: 6401–6410, 2001PubMedCrossRefGoogle Scholar
  57. 57.
    Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC: Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophagesin vitro.J Exp Med 192: 227–236, 2000PubMedCrossRefGoogle Scholar
  58. 58.
    Mastroeni P, Vazquez-Torres A, Fang FC, Xu Y, Khan S, Hormaeche CE, Dougan G: Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survivalin vivo.J Exp Med 192: 237–248, 2000PubMedCrossRefGoogle Scholar
  59. 59.
    Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M, Nathan C: Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10: 29–38, 1999PubMedCrossRefGoogle Scholar
  60. 60.
    Vazquez-Torres A, Fang FC: Oxygen-dependentanti-Salmonellaactivity of macrophages. Trends Microbiol 9: 29–33, 2001PubMedCrossRefGoogle Scholar
  61. 61.
    Denicola A, Souza JM, Radi R: Diffusion of peroxynitrite across erythrocyte membranes. Proc Natl Acad Sci USA 95: 3566–3571, 1998PubMedCrossRefGoogle Scholar
  62. 62.
    Abouhamad WN, Manson M, Gibson MM, Higgins CF: Peptide transport and chemotaxis inEscherichia coliandSalmonella typhimurium:Characterization of the dipeptide permease (Dpp) and the dipeptidebinding protein. Mol Microbiol 5: 1035–1047, 1991PubMedCrossRefGoogle Scholar
  63. 63.
    Juedes MJ, Wogan GN: Peroxynitrite-induced mutation spectra of pSP 189 following replication in bacteria and in human cells. Mutat Res 349: 51–61, 1996PubMedCrossRefGoogle Scholar
  64. 64.
    Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254: 1001–1003,1991PubMedCrossRefGoogle Scholar
  65. 65.
    Ischiropoulos H, al-Mehdi AB: Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 364: 279–282, 1995PubMedCrossRefGoogle Scholar
  66. 66.
    Hausladen A, Fridovich I: Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269: 29405–29408, 1994PubMedGoogle Scholar
  67. 67.
    Stamler JS: S-nitrosothiols and the bioregulatory actions of nitrogen oxides through reactions with thiol groups. Curr Top Microbiol Immunol 196: 19–36, 1995PubMedCrossRefGoogle Scholar
  68. 68.
    Evans TJ, Buttery LD, Carpenter A, Springall DR, Polak JM, Cohen J: Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proc Natl Acad Sci USA 93: 9553–9558, 1996PubMedCrossRefGoogle Scholar
  69. 69.
    Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Freeman BA: Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 269: 26066–26075, 1994PubMedGoogle Scholar
  70. 70.
    St Croix CM, Wasserloos KJ, Dineley KE, Reynolds IJ, Levitan ES, Pitt BR: Nitric oxide-induced changes in intracellular zinc homeostasis are mediated by metallothionein/thionein. Am J Physiol Lung Cell Mol Physiol 282: L185–L192, 2002Google Scholar
  71. 71.
    Gow A, Ischiropoulos H: NO running on MT: Regulation of zinc homeostasis by interaction of nitric oxide with metallothionein. Am J Physiol Lung Cell Mol Physiol 282: L183–L184, 2002PubMedGoogle Scholar
  72. 72.
    Truong-Trap AQ, Ruffin RE, Zalewski PD: Visualization of labile zinc and its role in apoptosis of primary airway epithelial cells and cell lines. Am J Physiol Lung Cell Mol Physiol 279: L1172–L1183, 2000Google Scholar
  73. 73.
    Tang ZL, Wasserloos K, St Croix CM, Pitt BR: Role of zinc in pulmonary endothelial cell response to oxidative stress. Am J Physiol Lung Cell Mol Physiol 281: L243–L249, 2001PubMedGoogle Scholar
  74. 74.
    Perry DK, Smyth MJ, Stennicke HR, Salvesen GS, Duriez P, Poirier GG, Hannun YA: Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J Biol Chem 272: 18530–18533, 1997PubMedCrossRefGoogle Scholar
  75. 75.
    Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH: Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J Biol Chem 276: 47524–47529, 2001PubMedCrossRefGoogle Scholar
  76. 76.
    Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW: The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272: 1013–1016, 1996PubMedCrossRefGoogle Scholar
  77. 77.
    Kim CH, Kim JH, Xu J, Hsu CY, Ahn YS: Pyrrolidine dithiocarbamate induces bovine cerebral endothelial cell death by increasing the intracellular zinc level. J Neurochem 72: 1586–1592, 1999PubMedCrossRefGoogle Scholar
  78. 78.
    Assreuy J, Cunha FQ, Epperlein M, Noronha-Dutra A, O’Donnell CA, Liew FY, Moncada S: Production of nitric oxide and superoxide by activated macrophages and killing ofLeishmania major.Eur J Immunol 24: 672–676, 1994PubMedCrossRefGoogle Scholar
  79. 79.
    Fernandes PD, Assreuy J: Role of nitric oxide and superoxide inGiardia lambliakilling. Braz J Med Biol Res 30: 93–99, 1997PubMedGoogle Scholar
  80. 80.
    Long R, Light B, Talbot JA: Mycobacteriocidal action of exogenous nitric oxide. Antimicrob Agents Chemother 43: 403–405, 1999PubMedCrossRefGoogle Scholar
  81. 81.
    Yu K, Mitchell C, Xing Y, Magliozzo RS, Bloom BR, Chan J: Toxicity of nitrogen oxides and related oxidants on mycobacteria:M. tuberculosisis resistant to peroxynitrite anion. Tuber Lung Dis 79: 191–198, 1999PubMedCrossRefGoogle Scholar
  82. 82.
    Kanner J, Harel S, Granit R: Nitric oxide as an antioxidant. Arch Biochem Biophys 289: 130–136, 1991PubMedCrossRefGoogle Scholar
  83. 83.
    Park JW: Attenuation of p47phox and p67phox membrane translocation as the inhibitory mechanism of S-nitrosothiol on the respiratory burst oxidase in human neutrophils. Biochem Biophy Res Commun 220: 31–35, 1996CrossRefGoogle Scholar
  84. 84.
    Bogdan C, Rollinghoff M, Diefenbach A: The role of nitric oxide in innate immunity. Immunol Rev 173: 17–26, 2000PubMedCrossRefGoogle Scholar
  85. 85.
    Bogdan C, Rollinghoff M, Diefenbach A: Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12: 64–76, 2000PubMedCrossRefGoogle Scholar
  86. 86.
    Kalina M, Blau H, Riklis S, Hoffman V: Modulation of nitric oxide production by lung surfactant in alveolar macrophages. Adv Exp Med Biol 479: 37–48, 2000PubMedCrossRefGoogle Scholar
  87. 87.
    Blau H, Riklis S, Van Iwaarden JF, McCormack FX, Kalina M: Nitric oxide production by rat alveolar macrophages can be modulatedin vitroby surfactant protein A. Am J Physiol 272: L1198–L1204, 1997PubMedGoogle Scholar
  88. 88.
    Weikert LF, Edwards K, Chroneos ZC, Hager C, Hoffman L, Shepherd VL: SP-A enhances uptake of bacillus Calmette-Guerin by macrophages through a specific SP-A receptor. Am J Physiol 272: L989–L995, 1997PubMedGoogle Scholar
  89. 89.
    Sano H, Sohma H, Muta T, Nomura S, Voelker DR, Kuroki Y: Pulmonary surfactant protein A modulates the cellular response to smooth and rough lipopolysaccharides by interaction with CD 14. J Immunol 163: 387–395, 1999PubMedGoogle Scholar
  90. 90.
    Pasula R, Wright JR, Kachel DL, Martin WJ: Surfactant protein A suppresses reactive nitrogen intermediates by alveolar macrophages in response toMycobacterium tuberculosis.J Clin Invest 103: 483–490, 1999PubMedCrossRefGoogle Scholar
  91. 91.
    Borron P, Veldhuizen RA, Lewis JF, Possmayer F, Caveney A, Inchley K, McFadden RG, Fraher LJ: Surfactant associated protein-A inhibits human lymphocyte proliferation and IL-2 production. Am J Respir Cell Mol Biol 15: 115–121, 1996PubMedGoogle Scholar
  92. 92.
    Borron PJ, Crouch EC, Lewis JF, Wright JR, Possmayer F, Fraher LJ: Recombinant rat surfactant-associated protein D inhibits human T lymphocyte proliferation and IL-2 production. J Immunol 161: 4599–4603, 1998PubMedGoogle Scholar
  93. 93.
    Yang S, Milla C, Panoskaltsis-Mortari A, Ingbar DH, Blazar BR, Haddad TY: Human surfactant protein a suppresses T cell-dependent inflammation and attenuates the manifestations of idiopathic pneumonia syndrome in mice. Am J Respir Cell Mol Biol 24: 527–536, 2001PubMedGoogle Scholar
  94. 94.
    Wright JR, Borron P, Brinker KG, Folz RJ: Surfactant protein A: Regulation of innate and adaptive immune responses in lung inflammation. Am J Respir Cell Mol Biol 24: 513–517, 2001PubMedGoogle Scholar
  95. 95.
    Borron P, McIntosh JC, Korfhagen TR, Whitsett JA, Taylor J, Wright JR: Surfactant-associated protein A inhibits LPS-induced cytokine and nitric oxide productionin vivo.Am J Physiol Lung Cell Mol Physiol 278: L840–L847, 2000PubMedGoogle Scholar
  96. 96.
    LeVine AM, Gwozdz J, Stark J, Bruno M, Whitsett J, Korfhagen T: Surfactant protein-A enhances respiratory syncytial virus clearancein vivo.J Clin Invest 103: 1015–1021, 1999PubMedCrossRefGoogle Scholar
  97. 97.
    Jesch NK, Dorger M, Enders G, Rieder G, Vogelmeier C, Messmer K, Krombach F: Expression of inducible nitric oxide synthase and formation of nitric oxide by alveolar macrophages: An interspecies comparison.Environ Health Perspect 105(suppl5):1297–1300, 1997PubMedCrossRefGoogle Scholar
  98. 98.
    Sittipunt C, Steinberg KP, Ruzinski JT, Myles C, Zhu S, Goodman RB, Hudson LD, Matalon S, Martin TR: Nitric oxide and nitrotyrosine in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 163: 503–510, 2001PubMedGoogle Scholar
  99. 99.
    Wildhirt SM, Dudek RR, Suzuki H, Bing RJ: Involvement of inducible nitric oxide synthase in the inflammatory process of myocardial infarction. Int J Cardiol 50: 253–261, 1995PubMedCrossRefGoogle Scholar
  100. 100.
    Kashem A, Endoh M, Yano N, Yamauchi F, Nomoto Y, Sakai H: Expression of inducible-NOS in human glomerulonephritis: The possible source is infiltrating monocytes/macrophages. Kidney Int 50: 392–399, 1996PubMedCrossRefGoogle Scholar
  101. 101.
    St Clair EW, Wilkinson WE, Lang T, Sanders L, Misukonis MA, Gilkeson GS, Pisetsky DS, Granger DI, Weinberg JB: Increased expression of blood mononuclear cell nitric oxide synthase type 2 in rheumatoid arthritis patients. J Exp Med 184: 1173–1178, 1996PubMedCrossRefGoogle Scholar
  102. 102.
    Liu CY, Wang CH, Chen TC, Lin HC, Yu CT, Kuo HP: Increased level of exhaled nitric oxide and up-regulation of inducible nitric oxide synthase in patients with primary lung cancer. Br J Cancer 78: 534–541, 1998PubMedCrossRefGoogle Scholar
  103. 103.
    Kumar V, Jindal SK, Ganguly NK: Release of reactive oxygen and nitrogen intermediates from monocytes of patients with pulmonary tuberculosis. Scand J Clin Lab Invest 55: 163–169, 1995PubMedCrossRefGoogle Scholar
  104. 104.
    Rich EA, Torres M, Sada E, Finegan CK, Hamilton BD, Toossi Z:Mycobacterium tuberculosis(MTB)-stimulated production of nitric oxide by human alveolar macrophages and relationship of nitric oxide production to growth inhibition of MTB. Tuber Lung Dis 78: 247–255, 1997PubMedCrossRefGoogle Scholar
  105. 105.
    Kwon OJ: The role of nitric oxide in the immune response of tuberculosis. J Korean Med Sci 12: 481–487, 1997PubMedGoogle Scholar
  106. 106.
    Vouldoukis I, Riveros-Moreno V, Dugas B, Ouaaz F, Becherel P, Debre P, Moncada S, Mossalayi MD: The killing ofLeishmania majorby human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc Natl Acad Sci USA 92: 7804–7808, 1995PubMedCrossRefGoogle Scholar
  107. 107.
    Nozaki Y, Hasegawa Y, Ichiyama S, Nakashima I, Shimokata K: Mechanism of nitric oxide-dependent killing ofMycobacterium bovisBCG in human alveolar macrophages. Infect Immun 65: 3644–3647, 1997PubMedGoogle Scholar
  108. 108.
    Wheeler MA, Smith SD, Garcia-Cardena G, Nathan CF, Weiss RM, Sessa WC: Bacterial infection induces nitric oxide synthase in human neutrophils. J Clin Invest 99: 110–116, 1997PubMedCrossRefGoogle Scholar
  109. 109.
    Kaplan SS, Lancaster JR Jr, Basford RE, Simmons RL: Effect of nitric oxide on staphylococcal killing and interactive effect with superoxide. Infect Immun 64: 69–76, 1996PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Philip O’Reilly
    • 1
  • Judy M. Hickman-Davis
    • 2
  • Philip McArdle
    • 2
  • K. Randall Young
    • 1
  • Sadis Matalon
    • 2
  1. 1.Department of MedicineDivision of Pulmonary and Critical Care MedicineUSA
  2. 2.Department of AnesthesiologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations