In vivo detection of nitric oxide distribution in mice

  • Andrei M. Komarov
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 37)


This paper discussesin vivodetection of nitric oxide (NO) distribution in endotoxin-treated mice using L-band (1.1 GHz) electron paramagnetic resonance spectroscopy (EPR) in combination with the hydrophilic NO trapping complex: N-methyl-D-glucamine dithiocarbamate and iron (MGD-Fe). MGD-Fe-NO complex is found in the upper abdomen (liver region), lower abdomen (kidney and urinary bladder) and head region of ICR mice. Experiments with nitric oxide synthase (NOS) inhibition and15N-labeled Larginine as NOS substrate verify the origin of trapped NO from L-arginine. However, contribution from a –nonenzymatic’ NO generation pathway can not be ruled out. This paper further examines potential artifacts, which may arise in experiments using dithiocarbamate-iron complexes as NO trapping agents. (Mol Cell Biochem 234/235: 387 392, 2002)

Key words

diethyldithiocarbamate endotoxic shock inducible nitric oxide synthase in vivo EPR nitric oxide spin trapping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Komarov A, Mattson D, Jones MM, Singh PK, Lai C-S:In vivospin trapping of nitric oxide in mice. Biochem Biophys Res Cornmun 195: 1191–1198, 1993CrossRefGoogle Scholar
  2. 2.
    Lai C-S, Komarov AM: Spin trapping of nitric oxide producedin vivoin septic shock mice. FEBS Lett 345: 120–124, 1994PubMedCrossRefGoogle Scholar
  3. 3.
    Komarov AM, Lai C-S: Detection of nitric oxide production in mice by spin trapping electron paramagnetic resonance spectroscopy. Biochim Biophys Acta 1272: 29–36, 1995PubMedCrossRefGoogle Scholar
  4. 4.
    Quaresima V, Takehara H, Tsushima K, Ferrari M, Utsumi H:In vivodetection of mouse liver nitric oxide generation by spin trapping electron paramagnetic resonance spectroscopy. Biochem Biophys Res Commun 221: 729–734, 1996PubMedCrossRefGoogle Scholar
  5. 5.
    Fujii H, Koscielniak J, Berliner LJ: Determination and characterization of nitric oxide generation in mice byin vivoL-band EPR spectroscopy. Magn Reson Med 38: 565–568, 1997PubMedCrossRefGoogle Scholar
  6. 6.
    Komarov AM:In vivoon-line detection of NO distribution in endotoxin-treated mice by L-band ESR. Cell Mol Biol 46: 1329–1336, 2000PubMedGoogle Scholar
  7. 7.
    Yoshimura T, Yokoyama H, Fujii S, Takayama F, Oikawa K, Kamada H:In vivoEPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice. Nature Biotechnol 14: 992–994, 1996CrossRefGoogle Scholar
  8. 8.
    Berliner LJ, Koscielniak J: Low-frequency EPR spectrometers: L-band. In: G. Eaton, S. Eato, K. Ohno (eds). EPR Imaging andIn VivoEPR. CRC Press, Boca Raton, FL, 1991, pp 65–75Google Scholar
  9. 9.
    Fujii H, Wan X, Zhong J, Berliner LJ, Yoshikawa K:In vivoimaging of spin-trapped nitric oxide in rats with septic shock: MRI spin trapping. Magn Res Med 42: 235–239, 1999CrossRefGoogle Scholar
  10. 10.
    Miilsch A, Lurie DJ, Seimenis I, Fichtlscherer B, Foster M: Detection of nitrosyl-iron complexes by proton-electron-double-resonance imaging. Free Rad Biol Med 27: 636–646, 1999CrossRefGoogle Scholar
  11. 11.
    Shinobu LA, Jones SC, Jones MM: Sodium N-methyl-D-glucamine dithiocarbamate and cadmium intoxication. Acta Pharmacol Toxicol 54: 189–194, 1984CrossRefGoogle Scholar
  12. 12.
    Lai C-S, Komarov AM: Dithiocarbamate spin traps forin vivodetection of nitric oxide produced in mice. In: H. Ohya-Nishiguchi, L. Packer (eds). Bioradicals Detected by ESR Spectroscopy. Birkhauser Verlag, Basel, 1995, pp 163–171CrossRefGoogle Scholar
  13. 13.
    Froncisz W, Oles T, Hyde JC: Murine L-band ESR loop-gap resonator. J Magn Reson 82: 109–114, 1989Google Scholar
  14. 14.
    Subczynski WK, Lukiewicz S, Hyde JS: Murinein vivoL-band ESR spin-label oximetry with a loop-gap resonator. Magn Reson Med 3: 747–745, 1986PubMedCrossRefGoogle Scholar
  15. 15.
    Misik V, Riesz P: Nitric oxide formation by ultrasound in aqueous solutions. J Phys Chem 100: 17986–17994, 1996CrossRefGoogle Scholar
  16. 16.
    Pou S, Tsai P, Porasuphatana S, Halpern H, Chandramouli GVR, Barth ED, Rosen GM: Spin trapping of nitric oxide by ferrochelates: Kinetic andin vivopharmacokinetic studies. Biochim Biophys Acta 1427: 216–226, 1999PubMedCrossRefGoogle Scholar
  17. 17.
    Fujii S, Yoshimura T: A new trend in iron-dithiocarbamate complexes: As an endogenous NO trapping agent. Coord Chem Rev 198: 89–99, 2000CrossRefGoogle Scholar
  18. 18.
    Paschenko SV, Khramtsov VV, Skatchkov MP, Plysnin VF, Bassenge E: EPR and laser flash photolysis studies of the reaction of nitric oxide with water soluble NO trap Fe(II)-proline-dithiocarbamate complex. Biochem Biophys Res Commun 225: 577–584, 1996PubMedCrossRefGoogle Scholar
  19. 19.
    Wong M-L, Rettori V, Al-Shekhlee A, Bongiorno PB, Canteros G, McCann SM, Gold PW, Licinio J: Inducible nitric oxide synthase gene expression in the brain during systemic inflammation. Nature Med 2: 581–584, 1996PubMedCrossRefGoogle Scholar
  20. 20.
    Mikoyan VD, Voevodskaya NV, Kubrina LN, Malenkova IV, Vanin AF: The influence of antioxidants and cycloheximide on the level of nitric oxide in the livers of micein vivo.Biochim Biophys Acta 1269: 19–24, 1995PubMedCrossRefGoogle Scholar
  21. 21.
    Yoshimura T, Fujii S, Yokoyama H, Kamada H: In vivoelectron paramagnetic resonance imaging of NO-bound iron complex in a rat head. Chem Lett 4: 309–310, 1995CrossRefGoogle Scholar
  22. 22.
    Fujii S, Yasuhiro S, Yoshimura T, Kamada H:In vivothree-dimensional EPR imaging of nitric oxide production from isosorbide dinitrate in mice. Am J Physiol 274: G857–G862, 1998Google Scholar
  23. 23.
    Lecour S, Maupoil V, Siri O, Tabard A, Rochette L: Electron spin resonance detection of nitric oxide generation in major organs from LPS-treated rats. J Cardiovasc Pharmacol 33: 78–85, 1999PubMedCrossRefGoogle Scholar
  24. 24.
    James PE, Liu KJ, Swartz HM: Direct detection of tissue nitric oxide in septic mice. In: A. Hudetz, D. Bruley (ed). Advances in Experimental Medicine and Biology. Plenum Press, New York, 1998, pp 181–187Google Scholar
  25. 25.
    Tsuchiya K, Jiang J-J, Yoshizumi M, Tamaki T, Houchi H, Minakuchi K, Fukuzawa K, Mason RP: Nitric oxide-forming reactions of the water-soluble nitric oxide spin-trapping agent MGD. Free Radic Biol Med 27: 347–355, 1999CrossRefGoogle Scholar
  26. 26.
    Tsuchiya K, Mason RP: NO-forming reactions between the ironN-methyl-D-glucamine dithiocarbamate complex and nitrite. J Biol Chem 275: 1551–1556, 2000PubMedCrossRefGoogle Scholar
  27. 27.
    Paya D, Maupoil V, Schott C, Rochette L, Stoclet J-C: Temporal relationships between levels of circulating NO derivatives, vascular NO production and hyporeactivity to noradrenaline induced by endotoxin in rats. Cardiovasc Res 30: 952–959, 1995PubMedGoogle Scholar
  28. 28.
    Wennmalm A, Benthin G, Petersson A-S: Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood on the oxygenation of its red cell haemoglobin. Br J Pharmacol 106: 507–508, 1992PubMedCrossRefGoogle Scholar
  29. 29.
    Kim Y-M, Lancaster JR Jr: Tetrahydrobiopterin-dependent nitrite oxidation to nitrate in isolated rat hepatocytes. FEBS Lett 332: 255259, 1993Google Scholar
  30. 30.
    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR: Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 126: 131–138, 1982PubMedCrossRefGoogle Scholar
  31. 31.
    Kuppusamy P, Wang P, Samoilov A, Zweier JL: Spatial mapping of nitric oxide generation in the ischemic heart using electron paramagnetic resonance imaging. Magn Reson Med 36: 212–218, 1996PubMedCrossRefGoogle Scholar
  32. 32.
    Benjamin N, O’Driscoll F, Dougall H, Duncan C, Smith L, Golden M, McKenzie H: Stomach NO synthesis. Nature (London) 368: 502, 1994CrossRefGoogle Scholar
  33. 33.
    Cornforth D: Role of nitric oxide in treatment of foods. In: J. Lancaster (ed). Nitric Oxide: Principles and Actions. Academic Press, San Diego, 1996, pp 259–287Google Scholar
  34. 34.
    Reutov VP, Sorokina EG: NO-synthase and nitrite-reductase components of nitric oxide cycle. Biochemistry (Moscow) 63: 874–884, 1998PubMedGoogle Scholar
  35. 35.
    Komarov AM: Chemistry and biology of nitric oxide. In: L. Berliner (ed). Biological Magnetic Resonance. Kluwer, New York, 2001 (in press)Google Scholar
  36. 36.
    Vanin AF, Liu X, Samouilov A, Stukan RA, Zweier JL: Redox properties of iron-dithiocarbamates and their nitrosyl derivatives: Implications for their use as traps of nitric oxide in biological systems. Biochim Biophys Acta 1474: 365–377, 2000PubMedCrossRefGoogle Scholar
  37. 37.
    Komarov AM, Wink DA, Feelisch M, Schmidt HHHW: Electron-paramagnetic resonance spectroscopy using N-methyl-D-glucamine dithiocarbamate iron cannot discriminate between nitric oxide and nitroxyl: Implications for the detection of reaction products for nitric oxide synthase. Free Radic Biol Med 28: 739–742, 2000PubMedCrossRefGoogle Scholar
  38. 38.
    Bazylinski DA, Hollocher TC: Metmyoglobin and methemoglobin as efficient traps for nitrosyl hydride (nitroxyl) in neutral aqueous solution. J Am Chem Soc 107: 7982–7986, 1985CrossRefGoogle Scholar
  39. 39.
    Bazylinski DA, Goretski J, Hollocher TC: On the reaction of trioxodinitrate (II) with hemoglobin and myoglobin. J Am Chem Soc 107: 7986–7989, 1985CrossRefGoogle Scholar
  40. 40.
    Xia Y, Cardounel AJ, Vanin AF, Zweier JL: Electron paramagnetic resonance spectroscopy with N-methyl-D-glucamine dithiocarbamate iron complexes distinguishes nitric oxide and nitroxyl anion in a redox-dependent manner: Applications in identifying nitrogen monoxide products from nitric oxide synthase. Free Radic Biol Med 29: 793–797, 2000PubMedCrossRefGoogle Scholar
  41. 41.
    Nakamura M, Nakamura S: Conversion of metmyoglobin to NO myoglobin in the presence of nitrite and reductants. Biochim Biophys Acta 1289: 329–335, 1996PubMedCrossRefGoogle Scholar
  42. 42.
    Mülsch A, Schray-Utz B, Mordvintcev PI, Hauschildt S, Busse R: Diethyldithiocarbamate inhibits induction of macrophage NO synthase. FEBS Lett 321: 215–218, 1993PubMedCrossRefGoogle Scholar
  43. 43.
    Komarov AM, Mattson DL, Mak IT, Weglicki WB: Iron attenuates nitric oxide level and iNOS expression in endotoxin-treated mice. FEBS Lett 424: 253–256, 1998PubMedCrossRefGoogle Scholar
  44. 44.
    Komarov AM, Mak IT, Weglicki WB: Iron potentiates nitric oxide scavenging by dithiocarbamates in tissue of septic shock mice. Biochim Biophys Acta 1361: 229–234, 1997PubMedCrossRefGoogle Scholar
  45. 45.
    Yoneyama H, Kosaka H, Ohnishi T, Kawazoe T, Mizoguchi K, Ichikawa Y: Reaction of neuronal nitric oxide synthase with the nitric oxide spin-trapping agent, iron complexed with N-dithiocarboxysarcosine. Eur J Biochem 266: 771–777, 1999PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Andrei M. Komarov
    • 1
  1. 1.Department of Physiology and Experimental MedicineThe George Washington University Medical CenterWashingtonUSA

Personalised recommendations