Nitric oxide decreases the sensitivity of pulmonary endothelial cells to LPS-induced apoptosis in a zinc-dependent fashion

  • Zi-Lue Tang
  • Karla J. Wasserloos
  • XiangHong Liu
  • Molly S. Stitt
  • Ian J. Reyolds
  • Bruce R. Pitt
  • Claudette M. St. Croix
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 37)


We hypothesized that: (a) S-nitrosylation of metallothionein (MT) is a component of pulmonary endothelial cell nitric oxide (NO) signaling that is associated with an increase in labile zinc; and (b) NO mediated increases in labile zinc in turn reduce the sensitivity of pulmonary endothelium to LPS-induced apoptosis. We used microspectrofluorometric techniques to show that exposing mouse lung endothelial cells (MLEC) to the NO-donor, S-nitrosocysteine, resulted in a 45% increase in fluorescence of the Zn2+-specific fluorophore, Zinquin, that was rapidly reversed by exposure to the Zn2+ chelator, NNN‘N’-tetrakis-(2pyridylmethyl)ethylenediamine; TPEN). The absence of a NO-mediated increase in labile Zn2+ in MLEC from MT-I and -II knockout mice inferred a critical role for MT in the regulation of Zn2+ homeostasis by NO. Furthermore, we found that prior exposure of cultured endothelial cells from sheep pulmonary artery (SPAEC), to the NO-donor, S-nitroso-N-acetylpenicillamine (SNAP) reduced their sensitivity to lipopolysaccharide (LPS) induced apoptosis. The anti-apoptotic effects of NO were significantly inhibited by Zn2+ chelation with low doses of TPEN (1011M). Collectively, these data suggest that S-nitrosylation of MT is associated with an increase in labile (TPEN chelatable) zinc and NO-mediated MT dependent zinc release is associated with reduced sensitivity to LPS-induced apoptosis in pulmonary endothelium. (Mol Cell Biochem 234/235: 211–217, 2002)

Key words

live cell imaging Zinquin S-nitrosylation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stamler JS, Lamas S, Fang FC: Nitrosylation: The prototypic redoxbased signaling mechanism. Cell 106: 675–683, 2001PubMedCrossRefGoogle Scholar
  2. 2.
    Pearce LL, Wasserloos K, St. Croix CM, Gandley R, Levitan ES, Pitt BR: Metallothionein, nitric oxide and zinc homeostasis in vascular endothelial cells. J Nutr 130: 1467S–1470S, 2000PubMedGoogle Scholar
  3. 3.
    St. Croix CM, Wasserloos KJ, Dineley KE, Reynolds IJ, Levitan ES, Pitt BR: Nitric oxide-induced changes in intracellular zinc homeostasis are modulated by metallothionein/thionein. Am J Physiol: Lung Cell Mol Physiol 282: L185–L192, 2002Google Scholar
  4. 4.
    Kim Y-M, Bombeck CA, Billiar TR: Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 84: 253–256, 1999PubMedCrossRefGoogle Scholar
  5. 5.
    Ceneviva GD, Tzeng E, Hoyt DG, Yee E, Gallagher A, Englehardt JF, Kim Y-M, Billiar TR, Pitt BR: Nitric oxide inhibits lipopolysaccharide induced apoptosis in pulmonary artery endothelial cells. Am J Physiol: Lung Cell Mol Physiol 19: L717–L728, 1998Google Scholar
  6. 6.
    Tzeng E, Kim Y-K, Pitt BR, Lizonova A, Kovesdi I, Billiar TR: Adenoviral transfer of the inducible nitric oxide synthase gene blocks endothelial cell apoptosis. Surgery 122: 255–263, 1997PubMedCrossRefGoogle Scholar
  7. 7.
    Kim Y-M, de Vera ME, Watkins SC, Billiar TR: Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor a-induced apoptosis by inducing heat shock protein 70 expression. J Biol Chem 272: 1402–1411, 1997PubMedCrossRefGoogle Scholar
  8. 8.
    Fukamachi Y, Karasaki Y, Sugiura T, Itoh H, Abe T, Yamamura K, Higashi K: Zinc suppresses apoptosis of U937 cells induced by hydrogen peroxide through an increase in Bcl-2/Bax ratio. Biochem Biophys Res Commun 246: 364–369, 1998PubMedCrossRefGoogle Scholar
  9. 9.
    Mannick JB, Miao XQ, Stamler JS: Nitric oxide inhibits Fas-induced apoptosis. J Biol Chem 272: 24125–24128, 1997PubMedCrossRefGoogle Scholar
  10. 10.
    Chung H-T, Pae H-O, Choi B-M, Billiar TR, Kim Y-M: Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun 282: 1075–1079, 2001PubMedCrossRefGoogle Scholar
  11. 11.
    Wyllie AH: Apoptosis: An overview. Br Med Bull 53: 451–465, 1997PubMedCrossRefGoogle Scholar
  12. 12.
    Kroncke KD, Fehsel K, Schmidt T, Zenke FT, Dasting I, Wesener JR, Betterman H, Breunig KD, Kolb-Bachofen V: Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem Biophys Res Commun 200: 1105–1110, 1994PubMedCrossRefGoogle Scholar
  13. 13.
    Cuajungco MP, Lees GJ: Nitric oxide generators produce accumulation of chelatable zinc in hippocampal neuronal perikarya. Brain Res 799: 118–129, 1998PubMedCrossRefGoogle Scholar
  14. 14.
    Tang Z-L, Wasserloos K, St. Croix CM, Pitt BR: Role of zinc in pulmonary endothelial cell response to oxidative stress. Am J Physiol: Lung Cell Mol Physiol 281: L243–L249, 2001Google Scholar
  15. 15.
    MichalskaAE, Choo KHA: Targeting and germ-line transmission of a null mutation at the metallothionein I and II loci in mouse. Proc Natl Acad Sci USA 90: 8088–8092, 1993CrossRefGoogle Scholar
  16. 16.
    Dong QG, Bernasconi S, Lostaglio S, De Calmonovici RW, MartinPadura I, Breviarion F, Garlanda C, Ramponi S, Mantovani A, Vecchi A: A general strategy for isolation of endothelial cells from murine tissues: Characterization of two endothelial cell lines from the murine lung and subcutaneous sponge implants. Arterioscler Thromb Vasc Biol 17: 1599–1604, 1997PubMedCrossRefGoogle Scholar
  17. 17.
    Hoyt DG, Mannix RJ, Rusnak JM, Pitt BR, Lazo JS: Collagen is a survival factor against LPS-induced apoptosis in cultured sheep pulmonary artery endothelial cells. Am J Physiol 13: L171–L177, 1995Google Scholar
  18. 18.
    Arndt-Jovin DJ, Jovin TM: Analysis and sorting of living cells according to deoxyribonucleic acid content. J Histochem Cytochem 25: 585589, 1977PubMedCrossRefGoogle Scholar
  19. 19.
    Pitt BR, Schwarz M, Woo ES, Yee E, Wasserloos K, Tran S, Weng W, Mannix RJ, Watkins SA, Tyurina YY, Tyurin VA, Kagan VE, Lazo JS: Overexpression of metallothionein decreases sensitivity of pulmonary endothelial cells to oxidant injury. Am J Physiol: Lung Cell Mol Physiol 273: L856–L865, 1997Google Scholar
  20. 20.
    Coyle P, Zalewski PD, Philcox JC, Forbes IJ, Ward AD, Lincoln SF, Mahadevan I, Rofe AM: Measurement of zinc in hepatocytes by using a fluorescent probe, zinquin: Relationship to metallothionein and intracellular zinc. Biochem J 303: 781–786, 1994PubMedGoogle Scholar
  21. 21.
    Zalewski PD, Millard SH, Forbes IJ, Kapaniris O, SlavotinekA, Betts WH, Ward A D, Lincoln SF, Mahadevan I: Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J Histochem Cytochem 42: 877–884, 1994PubMedCrossRefGoogle Scholar
  22. 22.
    Truong-Tran AQ, Carter J, Ruffin R, Zalewski PD: New insights into the role of zinc in the respiratory epithelium. Immunol Cell Biol 79: 170–177, 2001PubMedCrossRefGoogle Scholar
  23. 23.
    Kroncke KD: Zinc finger proteins as molecular targets for nitric oxide mediated gene regulation. Antioxid Redox Signal 3: 565–575, 2001PubMedCrossRefGoogle Scholar
  24. 24.
    Kröncke KD, Kolb-Bachofen V: Measurement of nitric oxide-mediated effects on zinc homeostasis and zinc finger transcription factors. Meth Enzymol 301: 126–135, 1999PubMedCrossRefGoogle Scholar
  25. 25.
    Moellering D, McAndrew J, Patel RP, Cornwell T, Lincoln T, Cao X, Messina JL, Forman HJ, Jo H, Darley-Usmar VM: Nitric oxide-dependent induction of glutathione synthesis through increased expression of gamma-glutamylcysteine synthetase. Arch Biochem Biophys 358: 74–82, 1998PubMedCrossRefGoogle Scholar
  26. 26.
    Matthews JR, Botting CH, Panico M, Morris HR, Hay RT: Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Res 24: 2236–2242,1996PubMedCrossRefGoogle Scholar
  27. 27.
    Brorson JR, Schumacker PT, Zhang H: Nitric oxide acutely inhibits neuronal energy production. J Neurosci 19: 147–158, 1999PubMedGoogle Scholar
  28. 28.
    Berendji D, Kolb-Bachofen V, Meyer KL, Grapenthin O, Weber H, Wahn V, Kroncke KD: Nitric oxide mediates intracytoplasmic and intranuclear zinc release. FEBS Lett 405: 37–41, 1997PubMedCrossRefGoogle Scholar
  29. 29.
    Gross SS, Wolin MS: Nitric oxide: Pathophysiological mechanisms. Annu Rev Physiol 57: 737–769, 1995PubMedCrossRefGoogle Scholar
  30. 30.
    Malinski T, Taha Z, Grunfeld S, Patton S, Kapturczak M, Tomboulian P: Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun 193: 10761082, 1993Google Scholar
  31. 31.
    Kim YM, Chung HT, Simmons RL, Billiar TR: Cellular non-heme iron content is a determinant of nitric oxide-mediated apoptosis, necrosis, and caspase inhibition. J Biol Chem 275: 10954–10961, 2000PubMedCrossRefGoogle Scholar
  32. 32.
    Okuno S, Shimizu S, Ito T, Nomura M, Hamada E, Tsujimoto Y, Matsuda H: Bc1–2 prevents caspase-independent cell death J Biol Chem 273: 1–2, 1998CrossRefGoogle Scholar
  33. 33.
    Zech B, Wilm M, van Eldik R, Brune B: Mass spectrometric analysis of nitric oxide-modified caspase-3. J Biol Chem 274: 20931–20936, 1999PubMedCrossRefGoogle Scholar
  34. 34.
    Fahrni CJ, O’Halloran TV: Aqueous coordination chemistry of quinoline-based fluorescence probes for the biological chemistry of zinc. J Am Chem Soc 121: 11448–11458, 1999CrossRefGoogle Scholar
  35. 35.
    Frederickson CJ, Hernandez MD, McGinty JF: Translocation of zinc may contribute to seizure-induced death of neurons. Brain Res 480: 317, 1989PubMedCrossRefGoogle Scholar
  36. 36.
    Hennig B, Meerarani P, Toborek M, McClain CJ: Antioxidant-like properties of zinc in activated endothelial cells. J Am Coll Nutr 18: 152–158, 1999PubMedGoogle Scholar
  37. 37.
    Hennig B, Toborek M, McClain CJ: Antiatherogenic properties of zinc: Implications in endothelial cell metabolism. Nutrition 12: 711–717,1996PubMedCrossRefGoogle Scholar
  38. 38.
    Choi DW, Koh JY: Zinc and brain injury. Annu Rev Neurosci 21: 347, 1998PubMedCrossRefGoogle Scholar
  39. 39.
    Meerarani P, Ramadass P, Toborek M, Bauer HC, Hennig B: Zinc protects against apoptosis of endothelial cells induced by lineolic acid and tumor necrosis factor alpha. Am J Clin Nutr 71: 81–87, 2000PubMedGoogle Scholar
  40. 40.
    Szuster-CiesielskaA, StachuraA, Slotwinska M, KaminskaT, Sniezko R, Paduch R, Abramczyk D, Filar J, Kandefer-Szerszen M: The inhibitory effect of zinc on cadmium induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicol 145: 159171, 2000CrossRefGoogle Scholar
  41. 41.
    Szuster-Ciesielska A, Lokaj I, and Kandefer-Szerszen M: The influence of cadmium and zinc ions on the interferon and tumor necrosis factor production in bovine aorta endothelial cells. Toxicol 145: 135145, 2000CrossRefGoogle Scholar
  42. 42.
    Lizard G, Deckert V, Dubrez L, Moisant M, Gambert P, Lagrost L: Induction of apoptosis in endothelial cells treated with cholesterol oxides. Am J Pathol 148: 1625–1638, 1996PubMedGoogle Scholar
  43. 43.
    Cohen JJ, Duke RC: Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol 132: 38–42, 1984PubMedGoogle Scholar
  44. 44.
    Perry DK, Smyth MJ, Stennicke HR, Salvesen GS, Duriez P, Poirier GG, Hannun YA: Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J Biol Chem 25: 18530–18533, 1997CrossRefGoogle Scholar
  45. 45.
    Chai F, Truong-Tran AQ, Ho LH, Zalewski PD: Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol Cell Biol 77: 272–278, 1999PubMedCrossRefGoogle Scholar
  46. 46.
    Morana SJ, Wolf CM, Li J, Reynolds JE, Brown MK, Eastman A: The involvement of protein phosphatases in the activation of ICE/CED-3 protease, intracellular acidification, DNA digestion, and apoptosis. J Biol Chem 271: 18263–18271, 1996PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Zi-Lue Tang
    • 1
  • Karla J. Wasserloos
    • 1
  • XiangHong Liu
    • 1
  • Molly S. Stitt
    • 1
  • Ian J. Reyolds
    • 2
  • Bruce R. Pitt
    • 1
  • Claudette M. St. Croix
    • 1
  1. 1.Department of Environmental and Occupational HealthThe Graduate School of Public Health, University of PittsburghPittsburghUSA
  2. 2.Department of PharmacologyUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations