Skip to main content

Dietary Folate, B Vitamins and the Brain: The Homocysteine Connection

  • Chapter
Diet — Brain Connections

Abstract

It has been known for decades that babies born to women that have a dietary deficiency in folic acid (folate) are at increased risk for birth defects, and that the nervous system is particularly susceptible to such defects. Folate deficiency in adults can increase risk of coronary artery disease, stroke, several types of cancer, and possibly Alzheimer’s and Parkinson’s diseases. Recent findings have begun to reveal the cellular and molecular mechanisms whereby folate counteracts age-related disease. An increase in homocysteine levels is a major consequence of folate deficiency that may have adverse effects on multiple organ systems during aging. Deficiencies of vitamins B6 (pyridoxine) and B12 (cobalamin) may also have adverse consequences for the developing and adult nervous systems, by increasing homocysteine levels. Humans with inherited defects in enzymes involved in homocysteine metabolism, including cystathionine β-synthase and 5, 10-methylenetetrahydrofolate reductase, exhibit features of accelerated aging and a marked propensity for several age-related diseases. Homocysteine enhances accumulation of DNA damage by inducing a methyl donor deficiency state and impairing DNA repair; in mitotic cells such DNA damage can lead to cancer, while in postmitotic cells such as neurons it promotes cell death. The emerging data strongly suggest that elevated homocysteine levels increase the risk of multiple age-related diseases, and point to dietary supplementation with B vitamins as a primary means of normalizing homocysteine levels and increasing the healthspan of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Saleh, M.T. and Coppen, A. 1989. Serum and red blood cell folate in depression. Acta Psychiatr. Scand. 80, 78–82

    Article  PubMed  CAS  Google Scholar 

  • Ambrosch, A., Dierkes, J., Lobmann, R., Kuhne, W., Konig, W., Luley, C. and Lehnert, H. 2001. Relation between homocysteinaemia and diabetic neuropathy in patients with Type 2 diabetes mellitus. Diabet. Med. 18,185–192.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, L.B., Wagner, P.A. and Christakis, G.J. 1982. Folacin and iron status and hematological findings in black and Spanish-American adolescents from urban low-income households. Am. J. Clin. Nutr. 35, 1023–1032.

    PubMed  CAS  Google Scholar 

  • Bell, I.R., Edman, J.S., Marby, D.W., Satlin, A., Dreier, T., Liptzin, B. and Cole, J.O. 1990. Vitamin B12 and folate status in acute geropsychiatric inpatients: affective and cognitive characteristics of a vitamin nondeficient population. Biol. Psychiatry 27,125–137.

    Article  PubMed  CAS  Google Scholar 

  • Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V. and Greenamyre, J. T. 2000. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease Nat. Neurosci. 3, 1301–1306.

    CAS  Google Scholar 

  • Blount, B.C. and Ames, B.N. 1995. DNA damage in folate deficiency. Baillieres Clin. Haematol 8, 461–478.

    Article  PubMed  CAS  Google Scholar 

  • Blundell, G., Jones, B.G., Rose, F.A. and Tudball, N. 1996. Homocysteine mediated endothelial cell toxicity and its amelioration. Atherosclerosis 122,163–172.

    Article  PubMed  CAS  Google Scholar 

  • Botez, M.I., Young, S.N., Bachevalier, J. and Gauthier, S. 1982. Effect of folic acid and vitamin B12 deficiencies on 5-hydroxyindoleacetic acid in human cerebrospinal fluid. Ann. Neurol 12, 479–484

    Article  PubMed  CAS  Google Scholar 

  • Bottiglieri, T. 1996. Folate, vitamin B12, and neuropsychiatric disorders. Nutr. Rev. 54, 382–390.

    Article  PubMed  CAS  Google Scholar 

  • Bottiglieri, T., Laundy, M., Crellin, R., Toone, B.K., Carney, M.W. and Reynolds, E.H. 2000. Homocysteine, folate, methylation, and monoamine metabolism in depression. J. Neurol. Neurosurg. Psychiatry. 69: 228–232.

    Article  PubMed  CAS  Google Scholar 

  • Boutell, J.M., Wood, J.D., Harper, P.S. and Jones, A.L. 1998. Huntingtin interacts with cystathionine beta-synthase. Hum. Mol. Genet. 7, 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Brattstrom, L., Lindgren, A., Israelsson, B., Malinow, M.R., Norrving, B., Upson, B. and Hamfelt, A. 1992. Hyperhomocysteinaemia in stroke: prevalence, cause, and relationships to type of stroke and stroke risk factors. Eur. J. Clin. Invest. 22, 214–221.

    Article  PubMed  CAS  Google Scholar 

  • Brattstrom, L., Lindgren, A., Israelsson, B., Andersson, A. and Hultberg, B..1994. Homocysteine and cysteine: determinants of plasma levels in middle aged and elderly subjects. J. Intern. Med. 236, 633–641.

    Article  PubMed  CAS  Google Scholar 

  • Bunout, D., Garrido, A., Suazo, M., Kauffman, R., Venegas, P., de la Maza, P., Petermann, M. and Hirsch, S..2000. Effects of supplementation with folic acid and antioxidant vitamins on homocysteine levels and LDL oxidation in coronary patients. Nutrition 16,107–110.

    Article  PubMed  CAS  Google Scholar 

  • Buysschaert, M., Dramais, A.S., Wallemacq, P.E. and Hermans, M.P. 2000. Hyperhomocysteinemia in type 2 diabetes: relationship to macroangiopathy, nephropathy, and insulin resistance. Diabetes Care 23,1816–1822.

    Article  PubMed  CAS  Google Scholar 

  • Cardo, E., Monros, E., Colome, C., Artuch, R., Campistol, J., Pineda, M. and Vilaseca, M.A. 2000. Children with stroke: polymorphism of the MTHFR gene, mild hyperhomocysteinemia, and vitamin status. J. Child Neurol. 15, 295–298.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, J.C., Ueland, P.M., Obeid, O.A., Wrigley, J., Refsum, H. and Kooner, J.S. 2000. Improved vascular endothelial function after oral B vitamins: An effect mediated through reduced concentrations of free plasma homocysteine. Circulation 102, 2479–2483.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Karaplis, A.C., Ackerman, S.L., Pogribny, I.P., Melnyk, S., Lussier-Cacan, S., Chen, M.F., Pai, A., John, S.W., Smith, R.S., Bottiglieri, T., Bagley, P., Selhub, J., Rudnicki, M.A., James, S.J. and Rozen, R. 2001. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum. Mol. Genet. 10, 433–443.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, R., Smith, A.D., Jobst, K.A., Refsum, H., Sutton, L. and Ueland, P.M. 1998. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch. Neurol 55, 1449–1455.

    Article  PubMed  CAS  Google Scholar 

  • Coppola, A., Davi, G., De Stefano, V., Mancini, F.P., Cerbone, A.M. and Di Minno, G. 2000. Homocysteine, coagulation, platelet function, and thrombosis. Semin. Thromb. Hemost. 26, 243–254.

    Article  PubMed  CAS  Google Scholar 

  • Cravo, M.L. and Camilo, M.E.. 2000. Hyperhomocysteinemia in chronic alcoholism: relations to folic acid and vitamins B(6) and B(12) status. Nutrition 16, 296–302.

    Article  PubMed  CAS  Google Scholar 

  • Davis, S.D., Nelson, T., and Shepard, T.H. (1970) Teratogenicity of vitamin B6 deficiency: omphalocele, skeletal and neural defects, and splenic hypoplasia. Science 169, 1329–1330.

    Article  PubMed  CAS  Google Scholar 

  • de la Monte, S.M., Sohn, Y.K., Ganju, N. and Wands, J.R. 1998. P53- and CD95-associated apoptosis in neurodegenerative diseases. Lab. Invest. 78, 401–411.

    PubMed  Google Scholar 

  • Deloughery, T.G., Evans, A., Sadeghi, A., McWilliams, J., Henner, W.D., Taylor, L.M. Jr. and Press, R.D. 1996. Common mutation in methylenetetrahydrofolate reductase. Correlation with homocysteine metabolism and late-onset vascular disease. Circulation 94, 3074–3078.

    Article  PubMed  CAS  Google Scholar 

  • DeRose, D.J., Charles-Marcel, Z.L., Jamison, J.M., Muscat, J.E., Braman, M.A., McLane, G.D., and Keith-Mullen, J. (2000) Vegan diet-based lifestyle program rapidly lowers homocysteine levels. Prev. Med. 30, 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Duan, W. and Mattson, M.P. 1999. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J. Neurosci. Res. 57, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Duan, W., Zhang, Z., Gash, D.M. and Mattson, M.P. (1999) Participation of prostate apoptosis response-4 in degeneration of dopaminergic neurons in models of Parkinson’s disease. Ann. Neurol.. 46, 587–597.

    Article  PubMed  CAS  Google Scholar 

  • Duan, W., Ladenheim, B., Cutler, R. G., Kruman, I. I., Cadet, J. L. and Mattson, M. P. 2001. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J. Neurochem. 80, 101–110.

    Article  Google Scholar 

  • Durand, P., Frost, M., Loreau, N., Lussier-Cacan, S. and Blache, D. 2001. Impaired homocysteine metabolism and atherothrombotic disease. Lab. Invest. 81, 645–672.

    Article  PubMed  CAS  Google Scholar 

  • Duthie, S.J., Grant, G. and Narayanan, S. 2000. Increased uracil misincorporation in lymphocytes from folate-deficient rats. Br. J. Cancer 83, 1532–1537.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, J.M., Finkelstein, J.D. and Mudd, S.H. 1975. Folate-responsive homocystinuria and “schizophrenia”. A defect in methylation due to deficient 5,10-methylenetetrahydrofolate reductase activity. N. Engl. J. Med. 292, 491–496.

    Article  PubMed  CAS  Google Scholar 

  • Gariballa, S.E. (2000) Nutritional factors in stroke. Br. J. Nutr. 84, 5–17.

    Article  PubMed  CAS  Google Scholar 

  • Giles, W.H., Croft, J.B., Greenlund, K.J., Ford, E.S. and Kittner, S.J. 1998. Total homocysteine concentration and the likelihood of nonfatal stroke: results from the Third National Health and Nutrition Examination Survey, 1988–1994. Stroke 29. 2473–2477.

    Article  PubMed  CAS  Google Scholar 

  • Girelli D, Friso S, Trabetti E, Olivieri O., Russo C., Pessotto R, Faccini G., Pignatti PF, Mazzucco A. and Corrocher, R. 1999. Methylenetetrahydrofolate reductase C677T mutation, plasma homocysteine, and folate in subjects from northern Italy with or without angiographically documented severe coronary atherosclerotic disease: evidence for an important genetic-environmental interaction. Blood 91, 4158–4163.

    Google Scholar 

  • Glynn, S.A., Albanes, D., Pietinen, P., Brown, C.C., Rautalahti, M., Tangrea, J.A., Gunter, E.W., Barrett, M.J., Virtamo, J. and Taylor, P.R. (1996) Colorectal cancer and folate status: a nested case-control study among male smokers. Cancer Epidemiol. Biomarkers Prev. 5, 487–494.

    PubMed  CAS  Google Scholar 

  • Godfrey, P.S., Toone, B.K., Carney, M.W., Flynn, T.G., Bottiglieri, T., Laundy, M., Chanarin, I. and Reynolds, E.H. 1990. Enhancement of recovery from psychiatric illness by methylfolate. Lancet. 336, 392–395.

    Article  PubMed  CAS  Google Scholar 

  • Graham, I. M. and O’Callaghan, F. 2000. The role of folic acid in the prevention of cardiovascular disease. Curr.. Opin. Lipidol. 11, 577–587.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Q., Fu, W., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M. and Mattson, M. P. 1999. Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knockin mice. Nature Med. 5, 101–107.

    Article  PubMed  CAS  Google Scholar 

  • Hall, C.A. (1990) Function of vitamin B12 in the central nervous system as revealed by congenital defects. Am. J. Hematol. 34, 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Hanratty, C.G., McGrath, L.T., McAuley, D.F., Young, I.S. and Johnston, G.D. 2001. The effects of oral methionine and homocysteine on endothelial function. Heart 85, 326–330.

    Article  PubMed  CAS  Google Scholar 

  • Hassing, L., Wahlin, A., Winblad, B., and Backman, L. (1999) Further evidence on the effects of vitamin B12 and folate levels on episodic memory functioning: a population-based study of healthy very old adults. Biol. Psychiatry 45, 1472–1480

    Article  PubMed  CAS  Google Scholar 

  • Hernanz, A., Plaza, A., Martin-Mola, E. and De Miguel, E. 1999. Increased plasma levels of homocysteine and other thiol compounds in rheumatoid arthritis women. Clin. Biochem. 32, 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Herran, A., Garcia-Unzueta, M.T., Amado, J.A., Lopez-Cordovilla, J.J., Diez-Manrique, J.F. and Vazquez-Barquero, J.L. 1999. Folate levels in psychiatric outpatients. Psychiatry Clin. Neurosci. 53, 531–533.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, M.A., Lalla, E., Lu, Y., Gleason, M.R., Wolf, B.M., Tanji, N., Ferran, L.J. Jr., Kohl, B., Rao, V., Kisiel, W., Stern, D.M. and Schmidt, A.M. 2001. Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J. Clin. Invest. 107, 675–683.

    Article  PubMed  CAS  Google Scholar 

  • Holven, K.B., Holm, T., Aukrust, P., Christensen, B., Kjekshus, J., Andreassen, A.K., Gullestad, L., Hagve, T.A., Svilaas, A., Ose, L. and Nenseter, M.S. 2001. Effect of folic acid treatment on endothelium-dependent vasodilation and nitric oxide-derived end products in hyperhomocysteinemic subjects. Am. J. Med. 110, 536–542.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao, K. 1998. Transgenic mice expressing Alzheimer amyloid precursor proteins. Exp. Gerontol. 33, 883–889.

    Article  PubMed  CAS  Google Scholar 

  • Hultberg, B., Andersson, A. and Lindgren, A. 1997. Marginal folate deficiency as a possible cause of hyperhomocystinaemia in stroke patients. Eur. J. Clin. Chem. Clin. Biochem 35, 25–28.

    PubMed  CAS  Google Scholar 

  • Hultberg, B., Andersson, A. and Isaksson, A. 2000. Hypomethylation as a cause of homocysteine-induced cell damage in human cell lines. Toxicology 147, 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Kato, I., Dnistrian, A.M., Schwartz, M., Toniolo, P., Koenig, K., Shore, R.E., Akhmedkhanov, A., Zeleniuch-Jacquotte, A. and Riboli, E. 1999. Serum folate, homocysteine and colorectal cancer risk in women: a nested case-control study. Br. J. Cancer 79, 1917–1922.

    Article  PubMed  CAS  Google Scholar 

  • Khajuria, A. and Houston, D.S. 2000. Induction of monocyte tissue factor expression by homocysteine: a possible mechanism for thrombosis. Blood 96, 966–972.

    PubMed  CAS  Google Scholar 

  • Kim, Y.I. 2000. Methylenetetrahydrofolate reductase polymorphisms, folate, and cancer risk: a paradigm of gene-nutrient interactions in carcinogenesis. Nutr. Rev. 58, 205–209.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y.I., Shirwadkar, S., Choi, S.W., Puchyr, M., Wang, Y. and Mason, J.B. 2000. Effects of dietary folate on DNA strand breaks within mutation-prone exons of the p53 gene in rat colon. Gastroenterology 119, 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Kirksey, A., and Wasynczuk, A.Z. (1993) Morphological, biochemical, and functional consequences of vitamin B6 deficits during central nervous system development. Ann. N. Y. Acad. Sci. 678, 62–80.

    Article  PubMed  CAS  Google Scholar 

  • Kluijtmans, L.A. and Whitehead, A.S. 2001. Methylenetetrahydrofolate reductase genotypes and predisposition to atherothrombotic disease; evidence that all three MTHFR C677T genotypes confer different levels of risk. Eur. Heart J. 22, 294–299

    Article  PubMed  CAS  Google Scholar 

  • Kruman, I.I., Culmsee, C., Chan, S.L., Kruman, Y., Guo, Z., Penix, L. and Mattson, M.P. 2000. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J. Neurosci. 20, 6920–6926.

    PubMed  CAS  Google Scholar 

  • Kruman, I. I., Kumaravel, T. S., Lohani, A., Cutler, R. G., Pedersen, W. A., Kruman, Y., Evans, M. and Mattson, M. P. 2001. Methyl donor deficiency impairs DNA repair and sensitizes hippocampal neurons to death in experimental models of Alzheimer’s disease. J. Neurosci. Submitted.

    Google Scholar 

  • Kubova, H., Folbergrova, J. and Mares, P. 1995. Seizures induced by homocysteine in rats during ontogenesis. Epilepsia 36, 750–756.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, W., Roebroek, R., Blom, H., van Oppenraaij, D., Przuntek, H., Kretschmer, A., Buttner, T., Woitalla, D. and Muller, T. 1998. Elevated plasma levels of homocysteine in Parkinson’s disease. Eur. Neurol. 40, 225–227.

    Article  PubMed  CAS  Google Scholar 

  • Lalouschek, W., Aull, S., Series, W., Schnider, P., Mannhalter, C., Lang, T., Deecke, L. and Zeiler, K 1999. Genetic and nongenetic factors influencing plasma homocysteine levels in patients with ischemic cerebrovascular disease and in healthy control subjects. J. Lab. Clin. Med. 133, 575–582.

    Article  PubMed  CAS  Google Scholar 

  • Langston,.J.W. 1998. Epidemiology versus genetics in Parkinson’s disease: progress in resolving an age-old debate. Ann. Neurol. 44, S45–52.

    Article  Google Scholar 

  • Lashner, B.A., Heidenreich, P.A., Su, G.L., Kane, S.V. and Hanauer, S.B. 1989. Effect of folate supplementation on the incidence of dysplasia and cancer in chronic ulcerative colitis. A case-control study. Gastroenterology. 97, 255–259.

    PubMed  CAS  Google Scholar 

  • Lentz, S.R., Erger, R.A., Dayal, S., Maeda, N., Malinow, M.R., Heistad, D.D. and Faraci, F.M 2000. Folate dependence of hyperhomocysteinemia and vascular dysfunction in cystathionine beta-synthase-deficient mice. Am. J. Physiol. Heart Circ. Physiol. 279, H970–975.

    PubMed  CAS  Google Scholar 

  • Lerner, V., Miodownik, C., Kaptsan, A., Cohen, H., Matar, M., Loewenthal, U., and Kotler, M. (2001) Vitamin B(6) in the treatment of tardive dyskinesia: a double-blind, placebo-controlled, crossover study. Am J Psychiatry. 158, 1511–1514.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, A.J. and Karlinsky, H. 1992. Folate, vitamin B12 and cognitive impairment in patients with Alzheimer’s disease. Acta Psychiatr. Scand. 86, 301–305.

    Article  PubMed  CAS  Google Scholar 

  • Li, J.C. and Kaminskas, E. 1985. Deficient repair of DNA lesions in Alzheimer’s disease fibroblasts. Biochem. Biophys. Res. Commun. 129, 733–738.

    Article  PubMed  CAS  Google Scholar 

  • Lovblad K, Ramelli G, Remonda L, Nirkko AC, Ozdoba C, Schroth G. (1997) Retardation of myelination due to dietary vitamin B12 deficiency: cranial MRI findings. Pediatr. Radiol. 27,155–158.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, T.L., Cohen, D.J., Miller, S., and Young, J.G. (1981) Folic acid and B12 in autism and neuropsychiatric disturbances of childhood. J. Am. Acad. Child Psychiatry 20, 104–111.

    Article  PubMed  CAS  Google Scholar 

  • Marsden, C.D. 1994. Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 57, 672–681.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo, K., Suzuki, R., Hamajima, N., Ogura, M., Kagami, Y., Taji, H., Kondoh, E., Maeda, S., Asakura, S., Kaba, S., Nakamura, S., Seto, M., Morishima, Y. and Tajima, K. 2001. Association between polymorphisms of folate- and methionine-metabolizing enzymes and susceptibility to malignant lymphoma. Blood 97, 3205–3209.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M.P. 1997. Cellular actions of β-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev 77, 1081–1032.

    PubMed  CAS  Google Scholar 

  • Mercie, P., Gamier, O., Lascoste, L., Renard, M., Closse, C., Durrieu, F., Mark, G., Boisseau, R.M. and Belloc, F. 2000. Homocysteine-thiolactone induces caspase-independent vascular endothelial cell death with apoptotic features. Apoptosis 5, 403–411.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J.W. 1999. Homocysteine and Alzheimer’s disease. Nutr. Rev 57, 126–129.

    PubMed  CAS  Google Scholar 

  • Morita, H., Kurihara, H., Tsubaki, S., Sugiyama, T., Hamada, C., Kurihara, Y., Shindo, T., Oh- hashi, Y., Kitamura, K. and Yazaki, Y. 1998. Methylenetetrahydrofolate reductase gene polymorphism and ischemic stroke in Japanese. Arterioscler. Thromb. Vase. Biol 18, 1465–1469.

    Article  CAS  Google Scholar 

  • Morita, H., Kurihara, H., Yoshida, S., Saito, Y., Shindo, T., Oh-Hashi, Y., Kurihara, Y., Yazaki, Y. and Nagai, R. 2001. Diet-induced hyperhomocysteinemia exacerbates neointima formation in rat carotid arteries after balloon injury. Circulation 103, 133–139

    Article  PubMed  CAS  Google Scholar 

  • Nagai, Y., Tasaki, H., Takatsu, H., Nihei, S., Yamashita, K., Toyokawa, T. and Nakashima, Y. 2001. Homocysteine inhibits angiogenesis in vitro and in vivo. Biochem. Biophys. Res. Commun. 281, 726–731.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson K, Warkentin S, Hultberg B, Faldt R, Gustafson L. (2000) Treatment of cobalamin deficiency in dementia, evaluated clinically and with cerebral blood flow measurements. Aging (Milano) 12, 199–207..

    CAS  Google Scholar 

  • Piedrahita, J.A., Oetama, B., Bennett, G.D., van Waes, J., Kamen, B.A., Richardson, J., Lacey, S.W., Anderson, R.G. and Finnell, R.H.. 1999. Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development. Nat. Genet. 23, 228–232.

    Article  PubMed  CAS  Google Scholar 

  • Pogribny, I.P., Basnakian, A.G. and Miller, B.J. 1995. Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res. 55, 1894–1901.

    PubMed  CAS  Google Scholar 

  • Ravaglia, G., Forti, P., Maioli, F., Vettori, C., Grossi, G., Bargossi, A.M., Caldarera, M., Franceschi, C., Facchini, A., Mariani, E. and Cavalli, G. 2000. Elevated plasma homocysteine levels in centenarians are not associated with cognitive impairment. Mech. Ageing Dev. 121, 251–261.

    Article  PubMed  CAS  Google Scholar 

  • Regland, B., Johansson, B.V., Grenfeldt, B., Hjelmgren, L.T. and Medhus, M. 1995. Homocysteinemia is a common feature of schizophrenia. J. Neural. Transm. Gen. Sect. 100,165–169.

    Article  PubMed  CAS  Google Scholar 

  • Regland, B., Germgard, T., Gottfries, C.G., Grenfeldt, B., Koch-Schmidt, A.C. 1997. Homozygous thermolabile methylenetetrahydrofolate reductase in schizophrenia-like psychosis. J. Neural. Transm. 104, 931–941.

    Article  PubMed  CAS  Google Scholar 

  • Renault, F., Verstichel, P., Ploussard, J.P., and Costil, J. (1999) Neuropathy in two cobalamin-deficient breast-fed infants of vegetarian mothers. Muscle Nerve 22, 252–254.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, E..H., Preece, J.M., Bailey, J. and Coppen, A. 1970. Folate deficiency in depressive illness. Br. J. Psychiatry 117, 287–292.

    PubMed  CAS  Google Scholar 

  • Robison, S.H., Munzer, J.S., Tandan, R. and Bradley, W.G. 1987. Alzheimer’s disease cells exhibit defective repair of alkylating agent-induced DNA damage. Ann. Neurol. 21, 250–258.

    Article  PubMed  CAS  Google Scholar 

  • Roubenoff, R., Dellaripa, P., Nadeau, M.R., Abad, L.W., Muldoon, B.A., Seihub, J. and Rosenberg, LH. 1997. Abnormal homocysteine metabolism in rheumatoid arthritis. Arthritis Rheum. 40, 718–722.

    Article  PubMed  CAS  Google Scholar 

  • Saw, S.M., Yuan, J.M., Ong, C.N., Arakawa, K., Lee, H.P., Coetzee, G.A. and Yu, M.C. (2001) Genetic, dietary, and other lifestyle determinants of plasma homocysteine concentrations in middle-aged and older Chinese men and women in Singapore. Am. J. Clin. Nutr. 73, 232–9.

    PubMed  CAS  Google Scholar 

  • Scott, J.M. and Weir, D.G. 1998. Folic acid, homocysteine and one-carbon methabolism: a review of the essential biochemistry. J. Cardiovasc. Risk 5, 223–227.

    Article  PubMed  CAS  Google Scholar 

  • Schwaninger, M., Ringleb, P., Winter, R., Kohl, B., Fiehn, W., Rieser, P.A. and Walter-Sack, I. 1999. Elevated plasma concentrations of homocysteine in antiepileptic drug treatment. Epilepsia 40, 345–350.

    Article  PubMed  CAS  Google Scholar 

  • Selhub, J., Bagley, L.C., Miller, J. and Rosenberg, LH. 2000. B vitamins, homocysteine, and neurocognitive function in the elderly. Am. J. Clin. Nutr. 71, 614S–620S.

    PubMed  CAS  Google Scholar 

  • Shields, D.C., Kirke, P.N., Mills, J.L., Ramsbottom, D., Molloy, A.M., Burke, H., Weir, D.G., Scott, J.M. and Whitehead, A.S. 1999. The thermolabile variant of methylenetetrahydrofolate reductase and neural tube defects: an evaluation of genetic risk and the relative importance of the genotypes of the embryo and the mother. Am. J. Hum. Genet. 64, 1045–1055.

    Article  PubMed  CAS  Google Scholar 

  • Shiloh, R., Weizman, A., Weizer, N., Dorfman-Etrog, P., and Munitz, H. (2001) Antidepressive effect of pyridoxine (vitamin B6) in neuroleptic-treated schizophrenic patients with co-morbid minor depression-preliminary open-label trial. Harefuah 140, 369–373,

    PubMed  CAS  Google Scholar 

  • Silver, H. (2000) Vitamin B12 levels are low in hospitalized psychiatric patients. Isr. J. Psychiatry Relat. Sci. 37, 41–45.

    PubMed  CAS  Google Scholar 

  • Sirotnak, F.M. and Tolner, B. 1999. Carrier-mediated membrane transport of folates in mammalian cells. Annu. Rev. Nutr 19, 91–122.

    Article  PubMed  CAS  Google Scholar 

  • Smithells, R.W., Sheppard, S. and Schorah, C.J. 1976. Vitamin dificiencies and neural tube defects. Arch. Dis. Child. 51, 944–950.

    Article  PubMed  CAS  Google Scholar 

  • Snowdon, D.A., Tully, C.L., Smith, C.D., Riley, K.P. and Markesbery, W.R. 2000. Serum folate and the severity of atrophy of the neocortex in Alzheimer disease: findings from the Nun study. Am. J. Clin. Nutr. 71, 993–998.

    PubMed  CAS  Google Scholar 

  • Song, J., Sohn, K.J., Medline, A., Ash, C., Gallinger, S. and Kim, Y.I. 2000. Chemopreventive effects of dietary folate on intestinal polyps in Apc+/-Msh2-/- mice. Cancer Res. 60, 3191–3199.

    PubMed  CAS  Google Scholar 

  • Starkebaum, G. and Harlan, J.M. 1986. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J. Clin. Invest. 77, 1370–1376.

    Article  PubMed  CAS  Google Scholar 

  • Sung, F.L., Slow, Y.L., Wang, G., Lynn, E.G. and Karmin, O. 2001. Homocysteine stimulates the expression of monocyte chemoattractant protein-1 in endothelial cells leading to enhanced monocyte Chemotaxis. Mol. Cell. Biochem. 216, 121–128.

    Article  PubMed  CAS  Google Scholar 

  • Surtees, R., Bowron, A. and Leonard, J. 1997. Cerebrospinal fluid and plasma total homocysteine and related metabolites in children with cystathionine β-synthase deficiency: the effect of treatment. Pediatr. Res 42, 577–582.

    Article  PubMed  CAS  Google Scholar 

  • Susser, E., Brown, A.S., Klonowski, E., Allen, R.H. and Lindenbaum, J. 1998. Schizophrenia and impaired homocysteine metabolism: a possible association. Biol. Psychiatry 44, 141–143.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, P.K., Hoffbrand, A.V., and Smith, I.S..(1982) Neurological involvement in hereditary transcobalamin II deficiency. J. Neurol. Neurosurg. Psychiatry 45, 74–77.

    Article  PubMed  CAS  Google Scholar 

  • Tseng, M., Murray, S.C., Kupper, L.L. and Sandler, R.S. 1996. Micronutrients and the risk of colorectal adenomas. Am. J. Epidemiol. 144, 1005–1014.

    Article  PubMed  CAS  Google Scholar 

  • Verhoeff, B. J., Trip, M.D., Prins, M.H., Kastelein, J.J. and Reitsma, P.H. 1998. The effect of a common methylenetetrahydrofolate reductase mutation on levels of homocysteine, folate, vitamin B12 and on the risk of premature atherosclerosis. Atherosclerosis 141, 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Wainfan, E. and Poirier, L. A. 1992. Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res. 52, 2071–2077.

    Google Scholar 

  • Wall, R.T., Harlan, J.M., Harker, L.A. and Striker, G.E. 1980. Homocysteine-induced endothelial cell injury in vitro: a model for the study of vascular injury. Thromb. Res 18, 113–121.

    Article  PubMed  CAS  Google Scholar 

  • Werstuck, G.H., Lentz, S.R., Dayal, S., Hossain, G.S., Sood, S.K., Shi, Y.Y., Zhou, J., Maeda, N., Krisans, S.K., Malinow, M.R. and Austin, R.C. 2001. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J. Clin. Invest. 107, 1263–1273.

    Article  PubMed  CAS  Google Scholar 

  • Wu, K., Helzlsouer, K.J., Comstock, G.W., Hoffman, S.C., Nadeau, M.R. and Seihub, J. 1999. A prospective study on folate, B12, and pyridoxal 5’-phosphate (B6) and breast cancer. Cancer Epidemiol. Biomarkers Prev 8, 209–217.

    CAS  Google Scholar 

  • Yasui, K., Kowa, H., Nakaso, K., Takeshima, T. and Nakashima, K. 2000. Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. Neurology 55, 437–440.

    Article  PubMed  CAS  Google Scholar 

  • Yoshino, Y 1984. Possible involvement of folate cycle in the pathogenesis of amyotrophic lateral sclerosis. Neurochem. Res. 9, 387–391.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Z. F., Luo, H., Fu, W. and Mattson, M. P. 1999. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp. Neurol. 155, 302–314.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mattson, M.P., Kruman, I.I., Duan, W. (2002). Dietary Folate, B Vitamins and the Brain: The Homocysteine Connection. In: Mattson, M.P. (eds) Diet — Brain Connections. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1067-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1067-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5378-2

  • Online ISBN: 978-1-4615-1067-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics