Skip to main content

Aldosterone-Receptor Blocking Agents

  • Chapter
Book cover Women’s Health and Menopause

Part of the book series: Medical Science Symposia Series ((MSSS,volume 17))

  • 318 Accesses

Abstract

Study findings pertaining to aldosterone-receptor blocking agents hold important implications in the care of patients with congestive heart failure (CHF). Such research is critical to the cardiovascular care of the postmenopausal population. Since its discovery in 1954, the hormone aldosterone has been a target for therapy in CHF because of its role in sodium retention and potassium excretion [1]. However, it is now clear that aldosterone is responsible for a wide array of adverse effects that contribute to the manifestation of CHF, including myocardial fibrosis, direct vascular damage, endothelial cell and baroreceptor dysfunction, and ventricular arrhythmias [1 – 6]. To control the production of aldosterone and thereby counter these effects, inhibition of angiotensin II, the peptide hormone responsible for the production and release of aldosterone, with an angiotensin-converting enzyme (ACE) inhibitor is standard treatment, based on the assumption that suppressing angiotensin II production will, in turn, suppress aldosterone production. However, increasing evidence suggests that ACE inhibitors cannot sustain suppression of aldosterone production [5,7 – 10], even when combined with an angiotensin-receptor blocking agent [11]. In the Randomized Evaluation of Strategies for Left Ventricular Dysfunction (RESOLVD) pilot study, the ACE inhibitor enalapril combined with the angiotensin receptor blocking agent candesartin in heart failure patients produced a transient reduction in serum aldosterone levels at 17 weeks. By 43 weeks, however, aldosterone levels had risen above control (Figure 1) [11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Soberman JE, Weber KT. Spironolactone in congestive heart failure. Curr Hypertens Rep 2000; 2:451–56.

    Article  PubMed  CAS  Google Scholar 

  2. Barr CS, Lang CC, Hanson J, Arnott M, et al. Effects of adding spironolactone to an angiotensin-converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1995; 76:1259–65.

    Article  PubMed  CAS  Google Scholar 

  3. MacFadyen RJ, Barr CS, Struthers AD. Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability and reduces early morning rise in heart failure in heart failure patients. Cardiovasc Res 1997; 35:30–34.

    Article  PubMed  CAS  Google Scholar 

  4. Wang W. Chronic administration of aldosterone depresses baroreceptor reflex function in the dog. Hypertension 1994; 24:571–75.

    Article  PubMed  CAS  Google Scholar 

  5. Duprez DA, De Buyzere ML, Rietzschel ER, et al. Inverse relationship between aldosterone and large artery compliance in chronically treated heart failure patients. Eur Heart J 1998 Sep; 19(9): 1371–76.

    Article  PubMed  CAS  Google Scholar 

  6. Rocha R, Chander PN, Khanna K, et al. Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension 1998Jan; 31(1Pt.2):451–58.

    Article  PubMed  CAS  Google Scholar 

  7. Borghi C, Boschi S, Ambrosioni E, et al. Evidence of a partial escape of rennin angiotensin aldosterone blockade in patients with acute myocardial infarction treated with ACE inhibitors. J Clin Pharmacol 1993; 33:40–45.

    PubMed  CAS  Google Scholar 

  8. Cleland JGF, Dargie HJ, Hodsman GP, et al. Captopril in heart failure: A double blind controlled trial. Br Heart J 1984; 52:530–35.

    Article  PubMed  CAS  Google Scholar 

  9. Biollaz J, Brunner HR, Gavras I, et al. Antihypertensive therapy with MK421: Angiotensin II-renin relationships to evaluate efficacy of converting enzyme blockade. J Cardiovasc Pharmacol 1982; 4:966–72.

    Article  PubMed  CAS  Google Scholar 

  10. Staessen J, Lijnen P, Fagard R, et al. Rise in plasma concentration of aldosterone during long-term angiotensin II suppresion. J Endocrinol 1981; 91:457–65.

    Article  PubMed  CAS  Google Scholar 

  11. McKelvie RS, Yusuf S, Pericak D, et al, for the RESOLVD Pilot Study Investigators. Comparison of candesartan, enalapril, and their combination in congestive heart failure: Randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. Circulation 1999; 100:1056–64.

    Article  PubMed  CAS  Google Scholar 

  12. Pitt B, Zannad F, Remme WJ, et al., for the Randomized Aldactone Evaluation Study Investigators. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999; 341:709–17.

    Article  PubMed  CAS  Google Scholar 

  13. Effectiveness of spironolactone added to an angiotensin-converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart failure (the Randomized Aldactone Evaluation Study [RALES]). Am J Cardiol 1996; 78:902–7.

    Google Scholar 

  14. Sun Y, Zhang J, Zhang JQ, Ramires FJ. Local angiotensin II and transforming growth factor-ß 1 in renal fibrosis of rats. Hypertension 2000; 35:1078–884.

    Article  PubMed  CAS  Google Scholar 

  15. Zannad F, Alia F, Dousset B, et al, for the RALES Investigators. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: Insights from the randomized aldactone evaluation study (RALES). Circulation 2000; 102:2700–6.

    Article  PubMed  CAS  Google Scholar 

  16. Robledo GA. Role de la spironolactone dans le traitement de l’hypertension arterille: Effets sur la function diastolique du ventricle gauche et sur la structure cardiaque. Réalités Cardiologiques 1996.

    Google Scholar 

  17. Hiltgen, et al. Régression sous spironolactone de l’hypertrophie ventriculaire gauche dans l’hypertension artérilles moderée: êtude echocardiographique de 125 cas. Réalités Cardiologiques 1995.

    Google Scholar 

  18. Benitah JP. Aldosterone upregulates calcium in adult rat myocite. Circ Res 1999; 85:1139–45.

    Article  PubMed  CAS  Google Scholar 

  19. Barrett JR. Measuring the health effects of free radicals. NCRR Reporter Spring 1999. Available at: http://www.ncrr.nih.gov/newspub/apr99rpt/Radicals.htm. National Center for Research Resources page for the NCRR Reporter.

    Google Scholar 

  20. Mathew R, Fan NY, Yuan N, et al. Inhibition of NOS enhances pulmonary vascular changes in stroke-prone spontaneously hypertensive rats. Am J Physiol Lung Cell Mol Physiol 2000; 278:L81-L89.

    PubMed  CAS  Google Scholar 

  21. Ito A, Egashira K, Kadokami T, et al. Chronic inhibition of endothelium-derived nitric oxide synthesis causes coronary microvascular structural changes and hyperreactivity to serotonin in pigs. Circulation 1995; 92:2636–44.

    Article  PubMed  CAS  Google Scholar 

  22. Numaguchi K, Egashira K, Takemoto M, et al. Chronic inhibition of nitric oxide synthesis causes pathologic coronary microvascular remodeling and myocardial fibrosis. Hypertension 1995; 26(pt l):957–62.

    Article  PubMed  CAS  Google Scholar 

  23. Kadokami T, Egashira K, Kuwata K, et al. Altered serotonin receptor subtypes contribute to microvascular hyperreactivity to serotonin in pigs with chronic inhibition of nitric oxide. Circulation 1996; 94:182–89.

    Article  PubMed  CAS  Google Scholar 

  24. Arnal JF, Warin L, Michel JB. Determinants of aortic cyclic guanosine monophosphate in hypertension induced by chronic inhibition of nitric oxide synthase. J Clin Invest 1992; 90:647–52.

    Article  PubMed  CAS  Google Scholar 

  25. Baylis C, Mitruka B, Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 1992; 90:278–81.

    Article  PubMed  CAS  Google Scholar 

  26. Bank N, Aynedjian HS, Khan GA. Mechanism of vasoconstriction induced by chronic inhibition of nitric oxide in rats. Hypertension 1994; 24:322–28.

    Article  PubMed  CAS  Google Scholar 

  27. Ribeiro MO, Antunes E, Nicci G, et al. Chronic inhibition of nitric oxide synthesis: A new model of arterial hypertension. Hypertension 1992; 20:298–303.

    Article  PubMed  CAS  Google Scholar 

  28. Usui M, Ichiki T, Katoh M, et al. Regulation of angiotensin II receptor expression by nitric oxide in rat adrenal gland. Hypertension 1998; 32:527–33.

    Article  PubMed  CAS  Google Scholar 

  29. Farquharson CAJ, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotension I/angiotension II conversion in patients with chronic heart failure. Circulation 2000; 101 (6);594–97.

    Article  PubMed  CAS  Google Scholar 

  30. Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. J Clin Invest 1995; 95:995–1001.

    Article  PubMed  CAS  Google Scholar 

  31. Juhan-Vague I, Alessi MC. PAI-1, obesity, insulin resistance and risk of cardiovascular events. Thromb Haemost 1997; 78:656–60.

    PubMed  CAS  Google Scholar 

  32. Hamsten A, de Fairde U, Walldius G, et al. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 1987; 2:3–9.

    Article  PubMed  CAS  Google Scholar 

  33. Brown NJ, Agirbasli MA, Williams GH, et al. Effect of activation and inhibition of the renin-angiotensin system on plasma PAI-1. Hypertension 1998; 32:965–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pitt, B. (2002). Aldosterone-Receptor Blocking Agents. In: Lobo, R.A., Crosignani, P.G., Paoletti, R., Bruschi, F. (eds) Women’s Health and Menopause. Medical Science Symposia Series, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1061-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1061-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5375-1

  • Online ISBN: 978-1-4615-1061-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics