Skip to main content

In Vitro-In Vivo Gene Expression Analysis in Atherosclerosis

  • Chapter
Cardiovascular Genomics: New Pathophysiological Concepts

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 242))

  • 63 Accesses

Abstract

Atherosclerosis, the pathologic inflammatory response to injury. of the human vessel wall, has been long recognized for its complexity of initiation, progression and ultimate appearance of clinical symptoms [1]. Many proteins and other compounds have been implicated in atherogenesis, and this list is now growing exponentially with the recent advances in high-throughput gene expression profiling [1 2 3 4 5 6 7 8 9].Indeed, a plethora of individual genes show altered expression during atherosclerosis, but the development of intervention strategies based on such individual genes in animal models has been rather challenging. The translation into treatment of atherosclerosis in man has proven even more difficult. A clear gene-environment interaction, most notably Western-type diet and life-style, lies at the basis of disease development. This indicates that disturbed patterns of gene-expression rather than single culprit genes form the basis for the widespread penetrance of the disease in the elderly Western population. We are applying functional Genomics to the study of atherosclerosis, with the goal of characterizing healthy and diseased gene expression profiles. While our immediate objective is to characterize those genes that are differentially expressed during atherogenesis, our long-term goal is to determine how a healthy gene expression profile can be induced in the cells of the vascular wall. This implies not only to identify differentially expressed genes but also to determine their function and, most importantly, to analyze the integrated pathways and mechanisms through which their expression is regulated. In this report we will describe the use of differential display RT-PCR and cDNA microarray expression analysis to determine changes in gene expression profiles in cultured vascular endothelial cells in response to pro-and antiatherogenic stimuli. We will briefly explore the computational analysis of such gene expression profiles as detected by a custom cardiovascular microarray. Finally, we show that insights that were gained in vitro can be extended to the in vivo (atherosclerotic) vascular wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross R. Atherosclerosis-an inflammatory disease. N. Engl. J. Med. 1999;340:115–26.

    Article  PubMed  CAS  Google Scholar 

  2. Horrevoets AJG, Fontijn RD, van Zonneveld A, de Vries CJM, ten Cate JW, and Pannekoek H. Vascular endothelial genes that are responsive to tumor necrosis factor-alpha in vitro are expressed in atherosclerotic lesions, including Inhibitor of Apoptosis Protein-1, stannin and two novel genes. BLOOD 1999;93:3418–31.

    PubMed  CAS  Google Scholar 

  3. de Vries CJM, van Achterberg TAE, Horrevoets AJG, ten Cate JW, and Pannekoek H. Differential display identification of 40 genes with altered expression in activated human smooth muscle cells: local expression in atherosclerotic lesions of smags, smooth muscle activation-specific genes. J. Biol. Chem. 2000;275:23939–47.

    Article  PubMed  Google Scholar 

  4. Faber BC, Cleutjens KB, Niessen RL, Aarts PL, Boon W, Greenberg AS, Kitslaar PJ, Tordoir JH, and Daemen MJ. Identification of genes potentially involved in rupture of human atherosclerotic plaques. Circ Res. 2001;89:547–54.

    Article  PubMed  CAS  Google Scholar 

  5. Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone MA Jr. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci USA 2001;98:4478–85.

    Article  PubMed  CAS  Google Scholar 

  6. Adams LD, Geary RL, McManus B, Schwartz SM. A comparison of aorta and vena cava medial message expression by cDNA array analysis identifies a set of 68 consistently differentially expressed genes, all in aortic media. Circ Res 2000;87:623–31.

    Article  PubMed  CAS  Google Scholar 

  7. Shiffman D, Mikita T, Tai JT, Wade DP, Porter JG, Seilhamer JJ, Somogyi R, Liang S, Lawn RM.

    Google Scholar 

  8. Large-scale gene expression analysis of cholesterol-loaded macrophages. J Biol Chem. 2000;275:37324–32.

    Google Scholar 

  9. Hashimoto S, Suzuki T, Dong HY, Yamazaki N, Matsushima K. Serial analysis of gene expression in human monocytes and macrophages. Blood 1999;94:837–44.

    PubMed  CAS  Google Scholar 

  10. van Soest S, Horrevoets AJG, Beauchamp NJ, and Pannekoek H. Current technologies in gene expression profiling: applications to cardiovascular research. Fibrinolysis and Proteolysis 2000;14:73–81.

    Article  Google Scholar 

  11. Fontijn RD, Goud B, Echard A, Jollivet F, van Marie J, Pannekoek H, and Horrevoets AJG. The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis.Mol. Cell. Biol.2001;21:2944–55.

    Article  PubMed  CAS  Google Scholar 

  12. Monajemi H, Fontijn RD, Pannekoek H, and Horrevoets AJG. The Apolipoprotein L gene cluster has emerged recently in evolution and is expressed in human vascular tissue. Submitted.

    Google Scholar 

  13. Asakura T, Karino, T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries Circ Res 1990;66:1045–66.

    Google Scholar 

  14. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, and Cybulsky MI. The NFkB signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl. Acad. Sci. USA 2000;97:90527.

    Article  Google Scholar 

  15. Shalon D, Smith SJ, Brown PO. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 1996;6:639–45.

    Article  PubMed  CAS  Google Scholar 

  16. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genomewide expression patterns. Proc Natl Acad Sci USA. 1998;95:14863–8.

    Article  PubMed  CAS  Google Scholar 

  17. Tamayo P, Slonim D, Mesitow J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, and Golub TR. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. 1999;96:2907–12.

    Article  PubMed  CAS  Google Scholar 

  18. Kuo CT, Veselits ML, Barton KP, et al. The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev. 1997;11:2996–3006.

    Article  PubMed  CAS  Google Scholar 

  19. Dekker RJ, van Soest S, Pannekoek H, and Horrevoets AJG. A micro-array analysis of fluid shear-stress modulated genes in endothelial cells discriminates NFkB-dependent and independent pathways. Submitted.

    Google Scholar 

  20. Dekker RJ, Pannekoek H, and Horrevoets AJG. Lung Kruppel-like Factor is specifically upregulated by fluid shear-stress in endothelial cells in vitro and absent from atherosclerotic lesions in vivo. Submitted.

    Google Scholar 

  21. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, and Levine AJ. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA. 1999;96:6745–50.

    Article  PubMed  CAS  Google Scholar 

  22. St. Croix, B. Rago, Velculescu V, et al. Genes expressed in human tumor endothelium. Science 2000;289:1197–202.

    Article  Google Scholar 

  23. Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, and Futcher B. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 2000;406:90–4.

    Article  PubMed  CAS  Google Scholar 

  24. Lander ES, et al (International human genome sequencing consortium). Initial sequencing and analysis of the human genome. Nature 2001;409:860–921

    Article  PubMed  CAS  Google Scholar 

  25. Venter JC. et al. The sequence of the human genome. Science 2001;291:1304–51.

    Article  PubMed  CAS  Google Scholar 

  26. Rubin, E.M., and Tall, A. Perspectives for vascular genomics..Nature407 (2000), 265–9

    Article  PubMed  CAS  Google Scholar 

  27. Bussemaker HJ, Li H, Siggia ED. Regulatory element detection using correlation with expression. Nature Genetics 27(2001), 167–71

    Article  PubMed  CAS  Google Scholar 

  28. Feeley BT, Miniati DN, Park AK, Hoyt EG, and Robbins RC. Nuclear factor-kappaB transcription factor decoy treatment inhibits graft coronary artery disease after cardiac transplantation in rodents. Transplantation. 2000;70:1560–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horrevoets, A.J.G., Dekker, R.J., Fontijn, R.D., van Soest, S., Pannekoek, H. (2002). In Vitro-In Vivo Gene Expression Analysis in Atherosclerosis. In: Doevendans, P.A., Kääb, S. (eds) Cardiovascular Genomics: New Pathophysiological Concepts. Developments in Cardiovascular Medicine, vol 242. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1005-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1005-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5347-8

  • Online ISBN: 978-1-4615-1005-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics