Skip to main content

Using Comparative Genome Analysis to Find Interaction Partners for Frataxin

  • Chapter
  • 62 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 242))

Abstract

The sequencing of complete genomes has provided the opportunity, not only to interpret the function of a protein within its proteomic context, but also to predict new functional interactions between proteins using comparative genome analysis [1]. Various methods have been proposed and demonstrated to predict functional interaction between proteins based on the genomic context of their genes [2 3 4 5]. These methods are all based on variations of the idea that genes that are somehow associated with each other on the genome tend to encode proteins that functionally interact. The types of genomic association that they use are either a) the fusion of genes; b) the conservation of gene order, e.g. when genes are located in operons; c) the co-occurrence of genes in genomes (also called ‘phylogenetic profiles’). A systematic analysis of the correlation between on the one hand the type of genomic context and on the other hand the type of functional interaction shows that conservation of genomic context can indeed be a reliable indication of a functional interaction. The functional interactions that are reflected in the conservation of genomic context include a wide variety of relations between proteins, including direct physical interactions but also less direct ones, like being part of the same metabolic or regulatory pathway. When there is prior knowledge about a protein’s involvement in a process, yet the exact function of the protein is not known, the co-occurrence of genes in genomes can more specifically pinpoint in which sub-process the protein plays a role [6 7]. Here we use genome comparisons to predict functional interactions for frataxin, a mitochondrial protein that has no detectable homologs with known function and that presently has a unique fold [8 9].Severely reduced levels of frataxin cause the disease Friedreich’s ataxia [10], which is characterized by degeneration of large sensory neurons and spinocerebellar tracts, cardiomyopathy and increased likelihood of diabetes [11]. In mitochondria, reduced levels of frataxin result in the absence of iron-sulfur (Fe-S) cluster dependent enzymes, accumulation of iron deposits, DNA damage and oxidative stress [12]. Based on such observations the main hypothesis about frataxin’s function is that it is directly involved in iron homeostasis of the mitochondria. Alternatively it has been

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huynen, M.A. and Snel, B. Gene and context: integrative approaches to genome analysis. Adv. Protein Chem. 2000;54;345–79.

    Article  CAS  Google Scholar 

  2. Huynen, M.A. and Bork, P. Measuring genome evolution. Proc. Natl. Acad. Sci. USA. 1998;95:5849–56.

    Article  CAS  Google Scholar 

  3. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D. and Yeates, T.O. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 1999;96:42885–8.

    Article  Google Scholar 

  4. Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O. and Eisenberg, D. Detecting protein function and protein-protein interactions from genome sequences. Science 2000;285:751–3.

    Article  Google Scholar 

  5. Huynen, M.A., Snel, B., Lathe, W. 3rdand Bork, P. Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res. 2000;10:1204–10.

    Article  PubMed  CAS  Google Scholar 

  6. Aravind, L., Watanabe, H., Lipman, D.J. and Koonin, E.V. Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc. Natl. Acad. Sci. USA 2000;97:11319–24.

    Article  PubMed  CAS  Google Scholar 

  7. Ettema, T.V.D., Oost, J., and Huynen, M.A. Modularity in the gain and loss of genes: Applications for function prediction. Trends Genet.2001;in press.

    Google Scholar 

  8. Musco, G., Stier, G., Kolmerer, B., Adinolfi, S., Martin, S., Frenkiel, T., Gibson T., and Pastore, A. Towards a structural understanding of Friedreich’s ataxia: the solution structure of frataxin. Structure Fold. Des. 2000;257:507–11.

    Google Scholar 

  9. Cho, S-J., Lee, M.G., Yang, J.K., Lee, J.-Y., Song, H.K. and Suh, S.W. Crystal structure of Escherichia coli CyaY protein reveals a previously unidentified fold for the evolutionarily conserved frataxin family. Proc. Natl. Acad. Sc. USA 2000;97:8932–7.

    Article  CAS  Google Scholar 

  10. Campuzano, V., Montermini, L., Lutz, Y., Cova, L., Hindelang, C., Jiralersprong, S., Trottier, Y., Kish, S.J., Faucheux, B., Trouillas, P. et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum. Mol. Genet. 1997:6:1771–80.

    CAS  Google Scholar 

  11. Durr, A., Cossee, M., Agid, Y., Campuzano, V., Mignard, C., Penet, C., Mandel, J.L., Brice, A. and Koenig, M. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N. Engl. J. Med. 1996;335:1169–75.

    Article  PubMed  CAS  Google Scholar 

  12. Puccio, H. and Koenig, M. Recent advances in the molecular pathogenesis of Friedreich’s ataxia. Hum. Mol. Genet. 2000;9:887–92.

    CAS  Google Scholar 

  13. Foury F. Low iron concentrations and aconitase deficiency in a yeast frataxin homologue deficient strain. FEBS Lett., 1999;456:281–4.

    Article  PubMed  CAS  Google Scholar 

  14. Adamec, J., Rusnak, F., Owen, W.G., Naylor, S., Benson, L.M., Gacy, A.M. and Isaya, G. Iron-dependent self-assembly of the recombinant yeast frataxin: implications for Friedreich’s ataxia. Am. J. Hum. Genet. 2000;67:549–62.

    Article  PubMed  CAS  Google Scholar 

  15. Gibson, T.J., Koonin, E.V., Musco, G., Pastore, A. and Bork, P. Friedreich’s ataxia protein: phylogenetic evidence for mitochondrial dysfunction. Trends Neurosci. 1996;19:465–8.

    Article  PubMed  CAS  Google Scholar 

  16. Babcock, M., de Silva, D., Oaks, R., Davis-Kaplan, S., Jiralersprong, S., Montermini, L., Pandolfo, M. and Kaplan, J. Regulation of mitochondrial accumulation by Yfhlp, a putative homolog of frataxin. Science 1997;276:1709–12.

    Article  PubMed  CAS  Google Scholar 

  17. Foury, F. and Cazzalini, O. Deletion of the yeast homologue of the human gene associated with Friedreich’s ataxia elicits iron accumulation in mitochondria FEBS Lett. 1997;411:3737.

    Google Scholar 

  18. Wilson R.B. and Roof D.M. Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue. Nat. Genet. 1997;16:352–7.

    Article  PubMed  CAS  Google Scholar 

  19. Zheng, L., Cash, V.L., Flint, D.H., Dean, D.R. Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol. Chem. 1998;273:13264–72.

    Article  PubMed  CAS  Google Scholar 

  20. Takahashi, Y. and Nakamura, M. Functional assignment of the ORF2-iscS-iscU-iscA-hscBhscA-fdx-ORF3 gene cluster involved in the assembly of Fe-S clusters in Escherichia coli. J. Biochem. (Tokyo) 1999;126:917–26.

    Article  CAS  Google Scholar 

  21. Schwartz, C.J., Djaman, O., Imlay, J.A. and Kiley, P.J. The cysteine desulfurase, IscS, has a major role in in vivo Fe-S cluster formation in Escherichia coli. Proc. Natl. Acad. Sci. USA 2000;97:9009–14.

    Article  PubMed  CAS  Google Scholar 

  22. Schilke, B., Voisine, C., Beinert, H. and Craig, E. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 1999;96:10206–11.

    Article  CAS  Google Scholar 

  23. Kaut, A., Lange, H., Diekert, K., Kispal, G. and Lill, R. Isaip is a component of the mitochondrial machinery for maturation of cellular iron-sulfur proteins and requires conserved cysteine residues for function. J. Biol. Chem. 2000;275:15955–61.

    Article  PubMed  CAS  Google Scholar 

  24. Jensen, L.T. and Culotta, V.C. Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostatis. Mol. Cell. Biol. 2000;20:3918–27.

    CAS  Google Scholar 

  25. Lange, H., Kaut, A., Kispal, G. and Lill, R. A mitochondrial ferredoxin is essential for the biogenesis of cellular iron-sulfur proteins. Proc. Natl. Acad. Sci. USA 2000;97:1050–5.

    Article  CAS  Google Scholar 

  26. Lutz, T., Westermann, B., Neupert, W. and Herrmann J.M. The mitochondrial proteins Ssgl and Jac 1 are required for the assembly of iron sulfur clusters in mitochondria. J. Mol. Biol. 2001;307:815–25.

    Article  PubMed  CAS  Google Scholar 

  27. Voisine, C., Cheng, Y.C., Ohlson, M., Schilke, B., Hoff, K., Beinert, H., Marszalek, J. and Craig, E. A. Jacl, a mitochondrial J-type chaperone, is involved in the biogenesis of Fe/S clusters in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2001;98:1483–8.

    Article  PubMed  CAS  Google Scholar 

  28. Kispal, G., Csere, P., Prohl, C. and Lill, R. The mitochondrial proteins Atmlp and Nfslp are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 1999;18:3981–9.

    Article  PubMed  CAS  Google Scholar 

  29. Manzella, L., Barros, M.H. and Nobrega, F.G. ARH1 of Saccharomyces cerevisiae: a new essential gene that codes for a protein homologous to the human adrenodoxin reductase. Yeast 1998;14:839–46.

    Article  PubMed  CAS  Google Scholar 

  30. Lill, R. and Kispal, G. Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Bioch. Sci. 2000;25:352–6.

    CAS  Google Scholar 

  31. Tong, W. H. and Rouait, T. Distinct iron-sulfur cluster assembly proteins exist in the cytosol and mitochondria of human cells. EMBO J. 2000;19:5692–700.

    Article  PubMed  CAS  Google Scholar 

  32. Nakai, K. and Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 1999;24:34–6.

    CAS  Google Scholar 

  33. Rudiger, S., Schneider-Mergener, J. and Bukau, B. Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J., 2001;20:104250.

    Google Scholar 

  34. Cupp-Vickery, J. R. and Vickery, L. E. Crystal structure of Hsc20, a J-type Co-chaperone from Escherichia coli. J. Mol. Biol. 2000;304:835–45.

    Article  CAS  Google Scholar 

  35. Silberg J. J., Hoff K. G., Tapley T. L. and Vickery L. E. The Fe/S assembly protein IscU behaves as a substrate for the molecular chaperone Hsc66 from Escherichia coli. J. Biol. Chem. 2001;276:1696–700.

    Article  PubMed  CAS  Google Scholar 

  36. Agar, J. N., Krebs, C., Frazzon, J., Huynh, B. H., Dean, D. R. and Johnson, M. K. IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly if [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 2000;27:7856–62.

    Article  Google Scholar 

  37. agnier-De-Choudens, S., Mattioli, T., Takahashi, Y. and Fontecave, M. Iron sulfur cluster assembly: characterization of IscA and evidence for a functional complex with ferredoxin. J. Biol. Chem. 2001;276:22604–7.

    Article  Google Scholar 

  38. Hoff, K. G., Silberg, J. J. and Vickery, L. E. Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc. Natl. Acad. Sci. USA, 2001;97:7790–5.

    Article  Google Scholar 

  39. Banecki, B., Liberek, K., Wall, D., Wawrzynow, A., Georgopoulis, C., Bertoli, E., Tanafi, F. and Zylicz, M. Structure-function analysis of the zinc-finger region of the DnaJ molecular chaperone. J. Biol. Chem.1996; 271:14840–8.

    Article  CAS  Google Scholar 

  40. Zsabo, A., Korzun, R., Hartl, F. U. and Flanagan, J. A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates. EMBO J., 1996;5:408–17.

    Google Scholar 

  41. Voisine, C., Schilke, B., Ohlson, M., Beinert, H., Marszalek, J. and Craig, E. A. Role of the Mitochondrial Hsp70s, Sscl and Ssql, in the Maturation of Ythi. Mol. Cel. Biol 2000;20:3677–84.

    CAS  Google Scholar 

  42. Puccio, H., Simon, D., Cossee, M., Criqui-Filipe, P., Tiziano, F., Meiki, J., Hindelang, C., Matyas, R., Rustin, P. and Koenig, M. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet.2001;27:181–6.

    CAS  Google Scholar 

  43. Smith, T. and Waterman, M.S. Identification of common molecular subsequences. J. Mol. Bio1.1981;147:195–7.

    Article  CAS  Google Scholar 

  44. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, G., Zhang, Z., Miller, W. and Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 1997;25:3389–302.

    Article  CAS  Google Scholar 

  45. Jeanmougin F., Thompson J. D., Gouy M., Higgins, D. G. and Gibson T. J. Multiple sequence alignment with ClustalX. Trends Biochem. Sci.1998;23:403–5.

    CAS  Google Scholar 

  46. Saitou, N. and Nei, M. The neighbor-joing method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406–25.

    CAS  Google Scholar 

  47. Snel, B., Bork, P. and Huynen, M.A. Genome phylogeny based on gene content. Nat. Genet. 1999;21:108–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huynen, M.A. (2002). Using Comparative Genome Analysis to Find Interaction Partners for Frataxin. In: Doevendans, P.A., Kääb, S. (eds) Cardiovascular Genomics: New Pathophysiological Concepts. Developments in Cardiovascular Medicine, vol 242. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1005-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1005-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5347-8

  • Online ISBN: 978-1-4615-1005-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics