Advertisement

Genetic Polymorphisms and Their Role in Ventricular Arrhythmias

  • S. Kääb
  • M. Näbauer
  • A. Pfeufer
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 242)

Abstract

Potentially life threatening ventricular arrhythmias may occur as a consequence of genetic variants affecting key proteins that directly or indirectly alter myocardial electrical properties. Diseases such as Long-QT-Syndrome, Brugada Syndrome, catecholaminergic polymorphic ventricular tachycardia in structurally normal hearts and hypertrophic, dilated, and right ventricular cardiomyopathy in structurally abnormal hearts are the best known examples of monogenic conditions causing ventricular arrhythmias and sudden cardiac death (SCD).

Keywords

Ventricular Arrhythmia Brugada Syndrome Right Bundle Branch Block Ventricular Cardiomyopathy Arrhythmogenic Right Ventricular Dysplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schwartz PJ, Priori SG, Napolitano C. The Long QT Syndrome. In: Zipes DP, Jalife J, eds. Cardiac Electro-physiology. From Cell to Bedside. Philadelphia: WB Saunders Co, 2000:597–615.Google Scholar
  2. 2.
    Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation 1999;99:529–33.PubMedCrossRefGoogle Scholar
  3. 3.
    Zareba W, Moss AJ, Schwartz Pi et al.Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N Engl J Med 1998;339:960–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwartz PJ, Priori SG, Spazzolini C.et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 2001;103: 89–95.PubMedCrossRefGoogle Scholar
  5. 5.
    Moss Ai, Zareba W, Hall WJ et al.Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation 2000;101:616–23.CrossRefGoogle Scholar
  6. 6.
    McRae J.R,Wagner G.S,Rogers M.C, Canent R.V. Paroxysmal familial ventricular fibrillation J. Pediat.1974;84:515–8.CrossRefGoogle Scholar
  7. 7.
    Viskin S, Lesh MD, Eldar M, Fish R, Setbon I, Laniado S, Belhassen B. Mode of onset of malignant ventricular arrhythmias in idiopathic ventricular fibrillation. J.Cardiovasc. Electrophysiol. 1997;8:1 115–20.CrossRefGoogle Scholar
  8. 8.
    Akai J, Makita N, Sakurada H, Shirai N, Ueda K, Kitabatake A, Nakazawa K, Kimura A, Hiraoka M. A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Lett. 2000;479: 29–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen Q, Kirsch G.E, Zhang D. et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998;392:293–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 1992; 20:1391–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Brugada R, Brugada J, Antzelevitch C et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation 2000;101:510–15.PubMedCrossRefGoogle Scholar
  12. 12.
    Coumel P, Fidelle J, Lucet V, Attuel P, Bouvrain Y. Catecholaminergic-induced severe ventricular arrhythmias with Adams-Stokes syndrome in children: report of four cases. Br Heart J 1978; 40: 28–37Google Scholar
  13. 13.
    Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel, P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation 1995;91: 1512–9.PubMedCrossRefGoogle Scholar
  14. 14.
    de Paola AA, Horowitz LN, Marques FB et al. Control of multiform ventricular tachycardia by propranolol in a child with no identifiable cardiac disease and sudden death. Am Heart J 1990; 119:1429–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Priori SG, Napolitano C, Tiso N et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie cate-cholaminergic polymorphic ventricular tachycardia. Circulation 2001; 103: 196–200.Google Scholar
  16. 16.
    Fontaine G, Fontaliran F, Hebert JL, Chemla D, Zenati O, Lecarpentier Y, Frank R. Arrhythmogenic right ventricular dysplasia. Annu. Rev. Med. 1999;50:17–35.CrossRefGoogle Scholar
  17. 17.
    Tabib A, Miras A, Taniere P, Loire R. Undetected cardiac lesions cause unexpected sudden cardiac death during occa-sional sport activity. A report of 80 cases. Eur Heart J 1999;20: 90–03.Google Scholar
  18. 18.
    McKoy G, Protonotarios N, Crosby A et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet. 2000;355: 2119–24.PubMedCrossRefGoogle Scholar
  19. 19.
    Keeling PJ, Gang Y, Smith G et al. Familial dilated cardiomyopathyin the United Kingdom. Br Heart J 1995; 73: 417–21PubMedCrossRefGoogle Scholar
  20. 20.
    Kamisago M, Sharma SD, DePalma SR, et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. New Eng. J. Med. 2000; 343: 1688–1696.Google Scholar
  21. 21.
    Teare D. Asymmetrical hypertrophy of the heart in young adults. Brit heart J 1958; 20: 1–8PubMedCrossRefGoogle Scholar
  22. 22.
    Maron BJ, Mathenge R, Casey SA, Poliac LC, Longe TF. Clinical profile of hypertrophic cardiomyopathy identified de novo in rural communities. J Am Coll Cardiol 1999;33:1590–5PubMedCrossRefGoogle Scholar
  23. 23.
    Geisterfer-Lowrance AAT, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 1990;62:999–1006PubMedCrossRefGoogle Scholar
  24. 24.
    Watkins H, MacRae C, Thierfelder L, Chou YH, Frenneaux M, McKenna W, Seidman JG, Seidman CE. A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nature Genet 1993;3:333–7PubMedCrossRefGoogle Scholar
  25. 25.
    Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG, Seidman CE. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature Genet 1995;1 1:434–7CrossRefGoogle Scholar
  26. 26.
    Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, Gautel M, Labeit S, James M, Beckmann J, Weissenbach J,Vosberg HP, Fiszman M, Komajda M, Schwartz K. Cardiac myosin binding protein C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nature Genet 1995;11:438–40PubMedCrossRefGoogle Scholar
  27. 27.
    Kimura A, Harada H, Park JE et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nature Genet 1997;16:379–82PubMedCrossRefGoogle Scholar
  28. 28.
    Hoffmann B, Schmidt-Traub H, Perrot A, Osterziel KJ, Gessner R. First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum Mutat. 2001; 17: 524.PubMedCrossRefGoogle Scholar
  29. 29.
    Mogensen J, Klausen IC, Pedersen AK et al. Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Invest 1999;103:R39–R43PubMedCrossRefGoogle Scholar
  30. 30.
    Gollob MH, Green MS, Tang AS et al. Identification of a gene responsible for familial WolffParkinson-White syndrome. N Engl J Med. 2001; 344:1823–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Blair E, Redwood C, Ashrafian H, Oliveira M, Broxholme J, Kerr B, Salmon A, Ostman-Smith 1, Watkins H. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet. 2001; 10: 1215–20.PubMedCrossRefGoogle Scholar
  32. 32.
    Friedlander Y, Siscovick DS, Weinmann S et al. Family history as a risk factor for primary cardiac arrest. Circulation1998; 97: 155–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Jouven X, Desnos M, Guerot C, Ducimetiere P. Predicting sudden death in the population: the Paris Prospective Study I. Circulation 1999; 99: 1978–83.PubMedCrossRefGoogle Scholar
  34. 34.
    Jeron A, Hengstenberg C, Engel S, Lowel H, Riegger GA, Schunkert H, Holmer S. The D-allele of the ACE polymorphism is related to increased QT dispersion in 609 patients after myocardial infarction. Eur Heart J. 2001; 22: 663–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Arimura T, Nakamura T, Hiroi S et al. Characterization of the human nebulette gene: a polymorphism in an actin-binding motif is associated with nonfamilial idiopathic dilated cardiomyopathy. Hum Genet. 2000; 107: 440–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • S. Kääb
  • M. Näbauer
  • A. Pfeufer

There are no affiliations available

Personalised recommendations