Skip to main content

Cardiac Fibrosis During the Development of Heart Failure: New Insights into Smad Involvement

  • Chapter
Book cover Cardiac Development

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 4))

  • 96 Accesses

Summary

Angiotensin II (angiotensin) and transforming growth factor-β1 (TGF-β1) play an important role in cardiac fibrosis and infarct scar remodeling after myocardial infarction (MI). We characterized 8 week post-MI rat hearts for altered expression of Smad proteins with and without losartan treatment. AT1 blockade was associated with attenuated activation of the latent form of TGF-β1 in remnant (viable) myocardium and infarct scar. Immunofluorescence (IF) studies revealed Smad 2 localization to myofibroblasts in target tissues with less intense staining in cardiac myocytes. Losartan administration (15mg/kg/day) for 8 weeks was associated with normalization of total cellular Smad 2 and Smad 4 overexpression in the infarct scar as well as Smad 2 overexpression in remnant heart tissue. On the other hand, phosphorylated Smad 2 (P-Smad 2) staining was reduced in cytosolic fractions from failing experimental heart tissues vs controls and these trends were normalized in the presence of losartan, suggesting augmented P-Smad 2 movement into nuclei in untreated hearts. Using cultured adult primary rat fibroblasts treated with 10-6M angiotensin, we noted rapid translocation (15 min) of P-Smad 2 into the cellular nuclei from the cytosol. Nuclear P-Smad 2 protein levels were increased in cultured fibroblasts following 15 min angiotensin treatment, and this response was blocked by losartan treatment. We conclude that angiotensin may influence total Smad 2 and 4 expression in post-MI heart failure, and that angiotensin treatment is associated with rapid P-Smad 2 nuclear translocation in isolated fibroblasts. This study suggests that crosstalk between angiotensin and Smad signaling are associated with fibrotic events in post-MI hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weber KT, Sun Y, Katwa LC. 1996. Wound healing following myocardial infarction. Clin Cardiol 19:447–455.

    Article  PubMed  CAS  Google Scholar 

  2. Pfeffer JM, Fischer TA, Pfeffer MA. 1995. Angiotensin-Converting enzyme inhibition and ventricular remodeling after myocardial infarction. Annu Rev Physiol 57:805–826.

    Article  PubMed  CAS  Google Scholar 

  3. Ju H, Zhao S, Tappia PS, Panagia V, Dixon IMC. 1998. Expression of Gqalpha and PLC-beta in scar and border tissue in heart failure due to myocardial infarction. Circulation 97:892–899.

    Article  PubMed  CAS  Google Scholar 

  4. Weber KT. 1997. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 96:4065–4082.

    Article  PubMed  CAS  Google Scholar 

  5. Ju H, Zhao S, Davinder SJ, Dixon IM. 1997. Effect of AT1 receptor blockade on cardiac collagen remodeling after myocardial infarction. Cardiovasc Res 35:223–232.

    Article  PubMed  CAS  Google Scholar 

  6. Lijnen PJ, Petrov W, Fagard RH. 2000. Induction of cardiac fibrosis by transforming growth factor-beta(1) [In Process Citation]. Mol Genet Metab Sep—Oct; 71(l–2):418–435.

    Article  CAS  Google Scholar 

  7. Massague J. 1998. TGF-beta signal transduction. Annu Rev Biochem 67:753–791.

    Article  PubMed  CAS  Google Scholar 

  8. Kudoh S, Komuro I, Mizuno T, Yamazaki T, Zou Y, Shiojima I, Takekoshi N, Yazaki Y. 1997. Angiotensin II stimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats. Circ Res 80:139–146.

    Article  PubMed  CAS  Google Scholar 

  9. Chenf YG, Hata A, Lo RS, Wotton D, Shi Y, Pavletich N, Massague J. 1998. Determinants of specificity in TGF-beta signal transduction. Genes Dev 12:2144–2152.

    Article  Google Scholar 

  10. Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M. 1997. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389:85–89.

    Article  PubMed  CAS  Google Scholar 

  11. Labbe E, Silvestri C, Hoodless PA, Wrana JL, Attisano L. 1998. Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell 2:109–120.

    Article  PubMed  CAS  Google Scholar 

  12. Derynck R, Zhang Y, Feng XH. 1998. Smads: transcriptional activators of TGF-beta responses. Cell 95:737–740.

    Article  PubMed  CAS  Google Scholar 

  13. Wotton D, Lo RS, Lee S, Massague J. 1999. A Smad transcriptional corepressor. Cell 97:29–39.

    Article  PubMed  CAS  Google Scholar 

  14. Massague J, Chen YG. 2000. Controlling TGF-beta signaling. Genes Dev Mar 15; 14(6):627–644.

    CAS  Google Scholar 

  15. Itoh S, Landstrom M, Hermansson A, Itoh F, Heldin CH, Heldin NE, ten Dijke P. 1998. Transforming growth factor beta1 induces nuclear export of inhibitory Smad7. J Biol Chem 273: 29195–29201.

    Article  PubMed  CAS  Google Scholar 

  16. Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke, P. 1997. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389:631–635.

    Article  PubMed  CAS  Google Scholar 

  17. Ulloa L, Doody J, Massague J. 1999. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 397:710–713.

    Article  PubMed  CAS  Google Scholar 

  18. Massague J. 1990. The transforming growth factor-beta family. Annu Rev Cell Biol 6:597–641.

    Article  PubMed  CAS  Google Scholar 

  19. Li JM, Brooks G. 1997. Differential protein expression and subcellular distribution of TGF beta1, beta2 and beta3 in cardiomyocytes during pressure overload-induced hypertrophy. J Mol Cell Cardiol 29:2213–2224.

    Article  PubMed  CAS  Google Scholar 

  20. Thompson NL, Bazoberry F, Speir EH, Casscells W, Ferraris VJ, Flanders KC, Kondaiah P, Geiser AG, Sporn MB. 1988. Transforming growth factor beta-1 in acute myocardial infarction in rats. Growth Factors 1:91–99.

    Article  PubMed  CAS  Google Scholar 

  21. Hao J, Ju H, Zhao S, Junaid A, Scammell-LaFleur T, Dixon IM. 1999. Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J Mol Cell Cardiol 31:667–678.

    Article  PubMed  CAS  Google Scholar 

  22. Peterson D, Ju H, Jianming Hao PM, Chapman D, Dixon IMC. 1998. Expression of Gia2 and Gsa in myofibroblasts localized to the infarct scar in heart failure due to myocardial infarction. Cardiovasc Res 41:575–585.

    Article  Google Scholar 

  23. Fabris B, Jackson B, Kohzuki M, Perich R, Johnston CI. 1990. Increased cardiac angiotensin-converting enzyme in rats with chronic heart failure. Clin Exp Pharmacol Physiol 17:309–314.

    Article  PubMed  CAS  Google Scholar 

  24. Sun Y, Weber KT. 1996. Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol 28:851–858.

    Article  PubMed  CAS  Google Scholar 

  25. Hanatani A, Yoshiyama M, Kim S, Omura T, Toda I, Akioka K, Teragaki M, Takeuchi K, Iwao H, Takeda T. 1995. Inhibition by angiotensin II type 1 receptor antagonist of cardiac phenotypic modulation after myocardial infarction. J Mol Cell Cardiol 27:1905–1914.

    Article  PubMed  CAS  Google Scholar 

  26. Campbell SE, Katwa LC. 1997. Angiotensin II stimulated expression of transforming growth factor-beta1 in cardiac fibroblasts and myofibroblasts. J Mol Cell Cardiol 29:1947–1958.

    Article  PubMed  CAS  Google Scholar 

  27. Gray MO, Long CS, Kalinyak JE, Li HT, Karliner JS. 1998. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc Res 40:352–363.

    Article  PubMed  CAS  Google Scholar 

  28. Sun Y, Zhang JQ, Zhang J, Ramires FJ. 1998. Angiotensin II, transforming growth factor-beta1 and repair in the infarcted heart. J Mol Cell Cardiol 30:1559–1569.

    Article  PubMed  CAS  Google Scholar 

  29. Dixon IMC, Lee SL, Dhalla NS. 1990. Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res 66:782–788.

    Article  PubMed  CAS  Google Scholar 

  30. Smits JF, van Krimpen C, Schoemaker RG, Cleutjens JP, Daemen MJ. 1992. Angiotensin II receptor blockade after myocardial infarction in rats: effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content. J Cardiovasc Pharmacol 20:772–778.

    PubMed  CAS  Google Scholar 

  31. Brilla CG, Zhou G, Matsubara L, Weber KT. 1994. Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol 26:809–820.

    Article  PubMed  CAS  Google Scholar 

  32. Ju H, Hao J, Zhao S, Dixon IMC. 1998. Antiproliferative and antifibrotic effects of mimosine on adult cardiac fibroblasts. Biochim Biophys Acta 1448:51–60.

    Article  PubMed  CAS  Google Scholar 

  33. Polak JM, van Noorden S. 1984. An introduction to immunocytochemistry: current techniques and problems. Polak J.M. 1–49. Oxford, Oxford University Press. Microscopy Handbooks. Polak J.M.

    Google Scholar 

  34. Gettys TW, Sheriff Carter K, Moomaw J, Taylor IL, Raymond JR. 1994. Characterization and use of crude alpha-subunit preparations for quantitative immunoblotting of G proteins. Anal Biochem 220:82–91.

    Article  PubMed  CAS  Google Scholar 

  35. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. 1985. Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85.

    Article  PubMed  CAS  Google Scholar 

  36. Harpel JG, Metz CN, Kojima S, Rifkin DB. 1992. Control of transforming growth factor-beta activity: latency vs. activation. Prog Growth Factor Res 4:321–335.

    Article  PubMed  CAS  Google Scholar 

  37. Sun Y, Cleutjens JP, Diaz-Arias AA, Weber KT. 1994. Cardiac angiotensin converting enzyme and myocardial fibrosis in the heart. Cardiovasc Res 28:1423–1432.

    Article  PubMed  CAS  Google Scholar 

  38. Holmes JW, Nunez JA, Covell JW. 1997. Functional implications of myocardial scar structure. Am J Physiol 272:H2123–H2130.

    PubMed  CAS  Google Scholar 

  39. Weber KT. 1997. Fibrosis, a common pathway to organ failure: angiotensin II and tissue repair. Semin Nephrol 17:467–491.

    PubMed  CAS  Google Scholar 

  40. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. 1999. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277:C1–C9.

    PubMed  CAS  Google Scholar 

  41. Weber KT, Swamynathan SK, Guntaka RV, Sun Y 1999. Angiotensin II and extracellular matrix homeostasis. Int J Biochem Cell Biol 31:395–403.

    Article  PubMed  CAS  Google Scholar 

  42. Schieffer B, Wirger A, Meybrunn M, Seitz S, Holtz J, Riede UN, Drexler H. 1994. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89:2273–2282.

    Article  PubMed  CAS  Google Scholar 

  43. Chua CC, Chua BH, Zhao ZY, Krebs C, Diglio C, Perrin E. 1991. Effect of growth factors on collagen metabolism in cultured human heart fibroblasts. Connect Tissue Res 26:271–281.

    Article  PubMed  CAS  Google Scholar 

  44. Yamagishi H, Kim S, Nishikimi T, Takeuchi K, Takeda T. 1993. Contribution of cardiac renin-angiotensin system to ventricular remodelling in myocardial-infarcted rats. J Mol Cell Cardiol 25:1369–1380.

    Article  PubMed  CAS  Google Scholar 

  45. Sun Y, Weber KT. 1996. Cells expressing angiotensin II receptors in fibrous tissue of rat heart. Cardiovasc Res 31:518–525.

    PubMed  CAS  Google Scholar 

  46. Dixon IMC, Ju H, Jassal DS, Peterson DJ. 1996. Effect of ramipril and losartan on collagen expression in right and left heart after myocardial infarction. Mol Cell Biochem 165:31–45.

    Article  PubMed  CAS  Google Scholar 

  47. Makino N, Hata T, Sugano M, Dixon IMC, Yanaga T 1996. Regression of hypertrophy after myocardial infarction is produced by the chronic blockade of angiotensin type 1 receptor in rats. J Mol Cell Cardiol 28:507–517.

    Article  PubMed  CAS  Google Scholar 

  48. Miyazono K, Hellman U, Wernstedt C, Heldin CH. 1988. Latent high molecular weight complex of transforming growth factor beta 1. Purification from human platelets and structural characterization. J Biol Chem 263:6407–6415.

    PubMed  CAS  Google Scholar 

  49. Zhang Y, Derynck R. 1999. Regulation of Smad signalling by protein associations and signalling crosstalk. Trends Cell Biol 9:274–279.

    Article  PubMed  CAS  Google Scholar 

  50. Engel ME, McDonnell MA, Law BK, Moses HL. 1999. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem 274:37413–37420.

    Article  PubMed  CAS  Google Scholar 

  51. Kretzschmar M, Doody J, Timokhina I, Massague J. 1999. A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev 13:804–816.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. C. Dixon Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jianming, H., Baiqiu, W., Jones, S.C., Dixon, I.M.C. (2002). Cardiac Fibrosis During the Development of Heart Failure: New Insights into Smad Involvement. In: Ostadal, B., Nagano, M., Dhalla, N.S. (eds) Cardiac Development. Progress in Experimental Cardiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0967-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0967-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5328-7

  • Online ISBN: 978-1-4615-0967-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics