Skip to main content

The Development of the Ventricular Conduction System: Transgenic Insights

  • Chapter
Cardiac Development

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 4))

  • 95 Accesses

Summary

Over the last century, extensive literature has been devoted to the understanding of the origin of the cardiac conduction system. First descriptions suggested that the ventricular conduction has a myocardial origin, although more recently this common wisdom was challenged by the fact that several neural markers are specifically expressed in the developing conduction system, leading to the hypothesis of an extracardiac origin. Cell tracing experiments in chicken embryos have recently demonstrated a myocardial origin for several components of the ventricular conduction system, i.e. peripheral Purkinje network, although the origin of the bundle branches and the atrioventricular node remain controversial.

During the last years, the analysis of the transcriptional potential of truncated cis-acting elements of several gene loci have provided transgenic lines with restricted (compartment-specific) expression during cardiac development that can shed light into the developmental origin of distinct regions of the heart. A truncated human desmin promoter and a KCNE1 knock-in transgene show that β-galactosidase expression is confined to the ventricular conduction system in the fetal/adult stage. In this study we have investigated the early expression profile of these two transgenic lines and compared them with the endogenous gene expression. Analyses of desmin transgenics reveal that myocardial cells from the early straight tube contribute to the atrioventricular node and the bundle branches, whereas KCNE1 -transgenics reveal a substantial contribution of the interventricular ring to those structures. These data reinforce the notion that the atrioventricular node and bundle of His have a myocardial origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moorman AFM, de Jong F, Denyn MMFJ, Lamers WH. 1998. Development of the conduction system. Circ Res 82:629–644.

    Article  PubMed  CAS  Google Scholar 

  2. Kamino K, Hirota A, Fujii S. 1981. Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature 290:595–597.

    Article  PubMed  CAS  Google Scholar 

  3. Van Mierop LHS. 1967. Localization of pacemaker in chick embryo heart at the time of initiation of heartbeat. Am J Physiol 212:407–415.

    PubMed  Google Scholar 

  4. Christoffels VM, Habets PEMH, Franco D, Campione M, de Jong F, Lamers WH, Bao Z-Z, Palmer S, Biben C, Harvey RP, Moorman AFM. 2000. Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol 223:266–278.

    Article  PubMed  CAS  Google Scholar 

  5. Moorman AFM, Lamers WH. 1994. Molecular anatomy of the developing heart. Trends Cardiovasc Med 4:257–264.

    Article  PubMed  CAS  Google Scholar 

  6. Gourdie RG, Mima T, Thompson RP, Mikawa T. 1995. Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development 121:1423–1431.

    PubMed  CAS  Google Scholar 

  7. Gorza L, Saggin L, Sartore S, Ausoni S. 1988. An embryonic-like myosin heavy chain is transiently expressed in nodal conduction tissue of the rat heart. J Mol Cell Cardiol 20:931–941.

    Article  PubMed  CAS  Google Scholar 

  8. Gorza L, Vitadello M. 1989. Distribution of conduction system fibers in the developing and adult rabbit heart revealed by an antineurofilament antibody. Circ Res 65:360–369.

    Article  PubMed  CAS  Google Scholar 

  9. Gorza L, Vettore S, Vitadello M. 1994. Molecular and cellular diversity of heart system myocytes. Trends Cardiovasc Res 4:153–159.

    Article  CAS  Google Scholar 

  10. Li Z, Marchard P, Humbert J, Babinet C, Paulin D. 1993. Desmin sequence elements regulating skeletal muscle-specific expression in transgenic mice. Development 117:947–959.

    PubMed  CAS  Google Scholar 

  11. Kupershmidt S, Yang T, Anderson ME,Wessels A, Niswender KD, Magnuson MA, Roden DM. 1999. Replacement by homologous recombination of the minK gene with lacZ reveals restriction of minK expression to the mouse cardiac conduction system. Circ Res 84:146–152.

    Article  PubMed  CAS  Google Scholar 

  12. Franco D, de Boer PAJ, de Gier-de Vries C, Lamers WH, Moorman AFM. 2001. Methods on in situ hybridization, immunohistochemistry and β-galactosidase reporter gene detection. Eur J Morphol 39:3–25.

    Article  PubMed  CAS  Google Scholar 

  13. Wessels A, Vermeulen JLM,Virágh S, Kálmán F, Lamers WH, Moorman AFM. 1991. Spatial distribution of “tissue specific” antigens in the developing human heart and skeletal muscle: II. An immuno-histochemical analysis of myosin heavy chain isoform expression patterns in the embryonic heart. Anat Rec 229:355–368.

    Article  PubMed  CAS  Google Scholar 

  14. Kubalak SW, Miller-Hance WC, O’Brien TX, Dyson E, Chien KR. 1994. (1994) Chamber specification of atrial myosin light chain-2 expression precedes septation during murine cardiogenesis. J Biol Chem 269:16961–16970.

    PubMed  CAS  Google Scholar 

  15. O’Brien TX, Lee KJ, Chien KR. 1993. Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proc Nad Acad Sci USA 90:5157–5161.

    Article  Google Scholar 

  16. Lesage F, Attali B, Lazdunski M, Barharin J. 1992. IsK, a slowly activating voltage-sensitive K+ channel. Characterization of multiple cDNAs and gene organization in the mouse. FEBS Lett 301:168–172.

    Article  PubMed  CAS  Google Scholar 

  17. Demolombe S, Franco D, de Boer P, Kupershmidt S, Roden D, Pereon Y, Jarry A, Moorman AFM, Escande D. 2001. Differential expression of KvLQT1 and its regulator IsK in mouse epithelia. Am J Physiol 280:C359–372.

    CAS  Google Scholar 

  18. Hogan B, Beddington R, Costantini F, Lacy E. 1994. In: Manipulating the mouse embryo Cold Spring Harbor Laboratory Press.

    Google Scholar 

  19. Moorman AFM, Houweling AC, de Boer PAJ, Christoffels VM. 2001. Sensitive Nonradioactive detection of mRNA in tissue sections: novel application of the whole-mount in situ hybridization protocol. J Histochem Cytochem 49:1–8.

    Article  PubMed  CAS  Google Scholar 

  20. Schaart G,Viebahn C, Langmann W, Ramaekers F. 1989. Desmin and titin expression in early postim-plantation mouse embryos. Development 107:585–596.

    PubMed  CAS  Google Scholar 

  21. Gourdie RG, Kubalak S, Mikawa T. 1999. Conducting the embryonic heart: orchestrating development of specialized cardiac tissues. Trends Cardiovasc Res 9:18–26.

    Article  CAS  Google Scholar 

  22. Cheng G, Litchenberg WH, Cole GJ, Mikawa T, Thompson RP, Gourdie RG. 1999. Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 126:5041–5049.

    PubMed  CAS  Google Scholar 

  23. De Jong F, Opthof T, Wilde AAM, Janse MJ, Charles R, Lamers WH, Moorman AFM. 1992. Persisting zones of slow impulse conduction in developing chicken hearts. Circ Res 71:240–250.

    Article  PubMed  Google Scholar 

  24. Moorman AFM, Vermeulen JML, Koban MU, Schwartz K, Lamers WH, Boheler KR. 1995. Patterns of expression of sarcoplasmic reticulum Ca2+ATPase and phospholamban mRNAs during rat heart development. Circ Res 76:616–625.

    Article  PubMed  CAS  Google Scholar 

  25. Moorman AFM, Schumacher CA, de Boer PAJ, Hagoort J, Bezstarosti K, van den Hoff MJB, Wagenaar GTM, Lamers JMJ, Wuytack F, Christoffels VM, Fiolet JWT 2000. Presence of functional sarcoplasmic reticulum in the developing heart and its confinement to chamber myocardium. Dev Biol 223:279–290.

    Article  PubMed  CAS  Google Scholar 

  26. Thompson RP, Soles-Rosenthal P, Cheng G. 2000. Origin and fate of cardiac conduction tissue. In: 5th International Symposium on Etiology and Morphogenesis of congenital Heart Disease. EB Clark, A Takao (Eds). 2000. Futura Publishing Co., Armonk, NY.

    Google Scholar 

  27. Franco D, Demolombe S, Kupershmidt S, Roden D, Escande D, Moorman AFM. 2001. Divergent expression domains of K+ channel (IKs and IKr) subunits during mouse heart development. Cardiovasc Res 52:65–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Franco, D., Moorman, A.F.M. (2002). The Development of the Ventricular Conduction System: Transgenic Insights. In: Ostadal, B., Nagano, M., Dhalla, N.S. (eds) Cardiac Development. Progress in Experimental Cardiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0967-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0967-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5328-7

  • Online ISBN: 978-1-4615-0967-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics