Skip to main content

Protection of the Developing Heart against Oxygen Deprivation

  • Chapter
  • 94 Accesses

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 4))

Summary

Cardiac tolerance to oxygen deprivation changes significandy during ontogenetic development: immature heart appears to be more resistant to ischemic/hypoxic injury as compared with the adult myocardium. The mechanisms of the higher resistance of the developing heart to oxygen deprivation have not yet been satisfactorily clarified. Adaptation to chronic hypoxia results in similarly enhanced cardiac resistance in animals exposed to hypoxia either immediately after birth or in adulthood. Preconditioning failed to improve ischemic tolerance just after birth but it developed during the early postnatal period, thus counteracting the decreasing tolerance to ischemia. It is, however, too early to reach a definitive conclusion on whether (i) the mechanism(s) involved in the protection of the immature heart differ or are identical with those of the adult myocardium and (ii) cardioprotection by adaptation to chronic hypoxia and preconditioning utilize the same or different pathways. Basic knowledge of the mechanisms which increase tolerance of the immature heart to oxygen deprivation may contribute to the design of therapeutic strategies for both pediatric cardiology and cardiac surgery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fejfar Z. 1975. Prevention against ischemic heart disease: a critical review. In: Modern Trends in Cardiology. Ed. MF Oliver, 465–499. London and Boston: Butterworths.

    Google Scholar 

  2. Ardehali A, Ports TA. 1990. Myocardial oxygen supply and demand. Chest 98:699.

    Article  PubMed  CAS  Google Scholar 

  3. Oštáadal B, Oštáádalová I, Dhalla NS. 1999. Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Phys Rev 79:635–659.

    Google Scholar 

  4. Pridjan AK, Levitsky S, Krukenkamp I, Silverman NA, Feinberg H. 1988. Developmental changes in reperfusion injury. J Thorac Cardiovasc Surg 96:577–581.

    Google Scholar 

  5. Fazekas JF, Alexander FAD, Himwich HE. 1941. Tolerance of the newborn to anoxia. Am J Physiol 134:281–285.

    CAS  Google Scholar 

  6. Su JY, Friedman WE 1973. Comparison of the responses of fetal and adult cardiac muscle to hypoxia. Am J Physiol 224:1249–1253.

    PubMed  CAS  Google Scholar 

  7. Jarmakani JM, Nagamoto T, Nakazawa M, Langer GA. 1978. Effect of hypoxia on myocardial highenergy phosphates in the neonatal mammalian heart. Am J Physiol 235:H475–H481.

    PubMed  CAS  Google Scholar 

  8. Jarmakani JM, Nakanishi T, George BL, Bers D 1982. Effect of extracellular calcium on myocardial mechanical function in the neonatal rabbit. Dev Pharmacol Ther 5:1–13.

    PubMed  CAS  Google Scholar 

  9. Nakanishi T, Nishioka K, Jarmakani JM. 1982. Mechanism of tissue Ca2+ gain during reoxygenation after hypoxia in rabbit myocardium. Am J Physiol 242:H437–H449.

    PubMed  CAS  Google Scholar 

  10. Young HH, Shimizu T, Nishioka K, Nakanishi T, Jarmakani JM. 1983. Effect of hypoxia and reoxygenation on mitochondrial function in neonatal myocardium. Am J Physiol 245: H998–1006.

    PubMed  CAS  Google Scholar 

  11. Oštáádal B, Procházka J, Pelouch V, Urbanová D, Widimský J. 1984. Comparison of cardiopulmonary responses of male and female rats to intermittent high altitude hypoxia. Physiol Bohemoslov 33:129–138.

    Google Scholar 

  12. Riva E, Hearse DJ. 1993. Age-dependent changes in myocardial susceptibility to ischemic injury. Cardiosci 4:85–92.

    CAS  Google Scholar 

  13. Awad WI, Shattock MJ, Chambers DJ. 1998. Ischemic preconditioning in immature myocardium. Circulation 98:II–206–II–213.

    Google Scholar 

  14. Oštáádalová I, Oštáádal B, Kolář F, Parratt JR, Wilson S. 1998. Tolerance to ischaemia and ischaemic preconditioning in neonatal rat heart. J Mol Cell Cardiol 30:857–865.

    Article  Google Scholar 

  15. Baker EJ, Boerboom LE, Olinger GN, Baker JE. 1995. Tolerance of the developing heart to ischemia: impact of hypoxemia from birth. Am J Physiol 268:H1165–H1173.

    PubMed  CAS  Google Scholar 

  16. Hoerter J. 1976. Change in the sensitivity to hypoxia and glucose deprivation in the isolated perfused rabbit heart during perinatal development. Pflügers Arch 363:1–6.

    Article  PubMed  CAS  Google Scholar 

  17. Bass A, Stejskalová M, Stieglerová A, Oštáádal B, Šamánek M. 2001. Ontogenetic development of energy-supplying enzymes in rat and guinea-pig heart. Physiol Res 50:237–245.

    PubMed  CAS  Google Scholar 

  18. Julia P, Young HH, Buckberg GD, Kofsky ER, Bugyi HI. 1990. Studies of myocardial protection in the immature heart. II. Evidence for importance of amino acid metabolism in tolerance to ischemia. J Thorac Cardiovasc Surg 100:888–895.

    PubMed  CAS  Google Scholar 

  19. Hohl CM. 1997. Effect of respiratory inhibition and ischemia on nucleotide metabolism in newborn swine cardiac myocytes. In: The Developing Heart. Ed. B Ostadal, M Nagano, N Takeda, NS Dhalla, 393–405. Philadelphia: Lippincott.

    Google Scholar 

  20. Škárka L, Baumruk F, Kopecký J, Jarkovská D, Oštáádal B. 2000. Ontogenetic development of mito- chondrial membrane potencial in the rat heart. Exp Clin Cardiol 5:48.

    Google Scholar 

  21. Nijjar MS, Dhalla NS. 1997. Biochemical basis of calcium handling in developing myocardium. In: The Developing Heart. Ed. B Ostadal, M Nagano, N Takeda, NS Dhalla, 189–217. Philadelphia: Lippincott.

    Google Scholar 

  22. Rizutto R, Bernardi P, Pozzan T 2000. Mitochondria as all-round players of the calcium game. J Physiol 529:37–47.

    Article  Google Scholar 

  23. Vornanen M. 1997. Postnatal changes in cardiac calcium regulation. In: The Developing Heart. Ed. B Ostadal, M Nagano, N Takeda, NS Dhalla, 219–229. Philadelphia: Lippincott.

    Google Scholar 

  24. Wibo M, Bravo G, Godfraind T. 1991. Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4-dihydropyridine and ryanodine receptors. Circ Res 68:662–673.

    Article  PubMed  CAS  Google Scholar 

  25. Škovránek J, Oštáádal B, Pelouch V, Procházka J. 1986. Ontogenetic differences in cardiac sensitivity to verapamil in rats. Pediatr Cardiol 7:25–29.

    Google Scholar 

  26. Kolář F, Oštáádal B, Papousek F. 1990. Effect of verapamil on contractile function of the isolated j perfused heart. Basic Res Cardiol 85:429–434.

    Article  PubMed  Google Scholar 

  27. Solaro RJ, Lee JA, Kentish JC, Allen DG. 1988. Effect of acidosis on ventricular muscle from adult and neonatal rats. Circ Res 63:779–787.

    Article  PubMed  CAS  Google Scholar 

  28. Southworth R, Shattock MJ, Kelly FJ. 1997. Age-related differences in the cardiac response to ischemia and free radical production on reperfusion. In: The Developing Heart. Ed. B Ostadal, M Nagano, N Takeda, NS Dhalla, 427–441. Philadelphia: Lippincott.

    Google Scholar 

  29. Hurtado A. 1960. Some clinical aspects of life at high altitudes. Ann Int Med 53:247–258.

    PubMed  CAS  Google Scholar 

  30. Kopecky M, Daum S. 1958. Tissue adaptation to anoxia in rat myocardium (in Czech). Cs Fyziol 7:518–521.

    Google Scholar 

  31. Poupa O, Krofta K, Procházka J, Turek Z. 1966. Acclimatization to simulated high altitude and acute cardiac necrosis. Fed Proc 25:1243–1246.

    PubMed  CAS  Google Scholar 

  32. Maroko PR, Deboer LWV. 1972. Infarct size reduction: a critical review. Adv Cardiol 27:282–316.

    Google Scholar 

  33. Murry CE, Jennings RJ, Reimer KA. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  34. Durand J. 1982. Physiologic adaptation to altitude and hyperexis. In: High Altitude Physiology and Medicine. Ed. W Brendel and PJV Zink RA, 209–211. New York: Springer-Verlag.

    Chapter  Google Scholar 

  35. Asemu G, Papoušek F, Oštáádal B, Kolář F. 1999. Adaptation to high altitude hypoxia protects the rat heart against ischemia-induced arrhythmias. Involvement of mitochondrial KATP channel. J Mol Cell Cardiol 31:1821–1831.

    Article  PubMed  CAS  Google Scholar 

  36. Meerson FZ, Ustinova EE, Manukhina EB. 1989. Prevention of cardiac arrhythmias by adaptation: regulatory mechanisms and cardiotropic effect. Biomed Biochim Acta 48:583–588.

    Google Scholar 

  37. Henley WN, Belush LL, Notestine MA. 1992. Reemergence of spontaneous hypertension in hypoxia- protected rats returned to normoxia as adults. Brain Res 579:211–218.

    Article  PubMed  CAS  Google Scholar 

  38. Oštáádal B, Oštáádalová I, Kolář F, Pelouch V, Dhalla NS. 1998. Cardiac adaptation to chronic hypoxia. Adv Organ Biol 6:43–60.

    Article  Google Scholar 

  39. Oštáádal B, Kolář F, Pelouch V, Widimský J. 1995. Ontogenetic differences in cardiopulmonary adaptation to chronic hypoxia. Physiol Res 44:45–51.

    Google Scholar 

  40. Oštáádalová I, Oštáádal B, Kolář F. 2000. Adaptation to chronic hypoxia and ischaemic preconditioning in neonatal rat heart. Exr Clin Cardiol 5:43.

    Google Scholar 

  41. Kolář F. 1996. Cardioprotective effects of chronic hypoxia: relation to preconditioning. In: Myocardial Preconditioning. Ed. Wainwright CL, Parratt JR, 261–275. Berlin: Springer Verlag.

    Google Scholar 

  42. Oštáádal B, Kolář F. 1999. Cardiac Ischemia: From Injury to Protection. 173pp. Boston, Dordrecht, London: Kluwer Academic Publishers.

    Google Scholar 

  43. Eells JT, Henry MH, Gross GJ, Baker JE. 2000. Increased mitochondrial KATP channel activity during chronic myocardial hypoxia. Is cardioprotection mediated by improved bioenergetics? Circ Res 87:915–921.

    Article  PubMed  CAS  Google Scholar 

  44. Sato T, O’Rourke B, Marban E. 1998. Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C. Circ Res 83:110–114.

    Article  PubMed  CAS  Google Scholar 

  45. Sahai A, Mei C, Zavosh A, Tannen RL. 1997. Chronic hypoxia induces LL-PK 1 cell proliferation and dedifferentiation by the activation of protein kinase C. Am J Physiol 272: F809–F815.

    PubMed  CAS  Google Scholar 

  46. Baker JE, Boerboom LE, Olinger GN. 1998. Age related changes in the ability of hypothermia and cardioplegia to protect ischemic rabbit myocardium. J Thorac Cardiovasc Surg 96:717–724.

    Google Scholar 

  47. Shi Y, Pritchard KA, Holman P, Rafiee P, Griffith OW, Kalyanaraman B, Baker JE. 2000. Chronic myocardial hypoxia increases nitric oxide synthase and decreases caveolin-3. Free Radical Biol Med 29:695–703.

    Article  CAS  Google Scholar 

  48. Garlid KD. 1996. Cation transport in mitochondria—the potassium cycle. Biochim Biophys Acta 1275:123–126.

    Article  PubMed  Google Scholar 

  49. Downey JM, Cohen MV. 1997. Preconditioning: what it is and how it works. Dialogues Cardiovasc Med 2:179–196.

    Google Scholar 

  50. Parratt JR. 1995. Possibilities for the pharmacological exploitation of ischaemic preconditioning. J Mol Cell Cardiol 27:991–1000.

    Article  PubMed  CAS  Google Scholar 

  51. Yellon DM, Baxter GF, Garcia-Dorado D, Heusch D, Sumeray MS. 1998. Ischaemic preconditioning: present position and future directions. Cardiovasc Res 37:21–33.

    Article  PubMed  CAS  Google Scholar 

  52. Liu H, Cala PM, Anderson SE. 1998. Ischemic preconditioning: effects on pH, Na and Ca in newborn rabbit hearts during ischemic/reperfusion. J Mol Cell Cardiol 30:685–697.

    Article  PubMed  CAS  Google Scholar 

  53. Baker JE, Holman P, Gross GJ. 1999. Preconditioning in immature rabbit hearts. Role of KATP channels. Circulation 99:1249–1254.

    Article  PubMed  CAS  Google Scholar 

  54. Webster KA, Discher DJ, Bishopric NH. 1995. Cardioprotection in an in vitro model of hypoxic preconditioning. J Mol Cell Cardiol 27:453–458.

    Article  PubMed  CAS  Google Scholar 

  55. Ovelgønne JH, Van Wijk R,Verkleij AJ, Post JA. 1996. Cultured neonatal rat heart cells can be preconditioned by ischemia, but not by heat shock. The role of stress proteins. J Mol Cell Cardiol 28: 1617–1629.

    Article  PubMed  Google Scholar 

  56. Vegh A, Komori S, Szekeres L, Parratt JR. 1992. Antiarhythmic effects of preconditioning in anaesthetized dogs and rats. Cardiovasc Res 26:487–495.

    Article  PubMed  CAS  Google Scholar 

  57. Shinbo A, Ijima T. 1997. Potentiation by nitric oxide of the ATP-sensitive K+ current induced by K+ channel openers in guinea-pig ventricular cells. Br J Pharmacol 120:1568–1574.

    Article  PubMed  CAS  Google Scholar 

  58. O’Rourke B. 2000. Pathophysiological and protective roles of mitochondrial ion channels. J Physiol 529:23–30.

    Article  PubMed  Google Scholar 

  59. Baines CP, Wang L, Cohen MV, Downey JM. 1999. Myocardial protection by insulin is dependent on phosphatidylinositol 3-kinase but not protein kinase C or KATP channels in the isolated rabbit hearts.

    Google Scholar 

  60. Downey JM, Cohen MV. 2000. Do mitochondrial KATP channels serve as triggers rather than endeffectors of ischemic preconditioning’s protection? Basic Res Cardiol 95:272–274.

    Article  PubMed  CAS  Google Scholar 

  61. Kolář F, Asemu G, Neckář J, Papoušek F, Oštáádal B. 1999. Cardioprotection following chronic hypoxia. Physiol Res 48:S7

    Google Scholar 

  62. Tajima M, Katayose D, Bessho M, Isoyama S. 1994. Acute ischaemic preconditioning and chronic hypoxia independendy increase myocardial tolerance to ischaemia. Cardiovasc Res 28:312–319.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. OšťáDal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

OšťáDal, B., Ošťa’Dalova, I., Škárka, L., Kolář, F. (2002). Protection of the Developing Heart against Oxygen Deprivation. In: Ostadal, B., Nagano, M., Dhalla, N.S. (eds) Cardiac Development. Progress in Experimental Cardiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0967-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0967-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5328-7

  • Online ISBN: 978-1-4615-0967-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics