Skip to main content

Molecular Phenotype of the Developing Heart with a Congenital Anomaly

  • Chapter
Cardiac Development

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 4))

Summary

A high prevalence of congenital heart malformations accounts for defects in the outflow tract accompanied with right ventricular hypertrophy (KVH), such as in case of tetralogy of Fallot (ToF) and in pulmonary atresia (PA) with a ventricular septal defect (VSD). The etiology and contributing molecular events in cardiovascular malformations are poorly understood. These patients require primary corrective surgical repair at young age, which is now a treatment of choice where closing of the VSD and removing the right ventricular outflow tract obstruction are performed. In the past years, we have been investigating the myocardial molecular phenotype at various stages of KVH in ToF and PA/VSD. In the study, summarised in this chapter, we assessed the surface area of cells in right ventricular biopsies and examined the myocardial fibrosis by measuring total collagen and fibronectin expression both at mRNA and protein level. Assessment of myocardial cell hypertrophy revealed significantly enlarged (p < 0.01) cells in adult (>25yr.) patients with ToF as compared to age matched controls. Immunohistochemical staining of biopsies for collagen followed by video image analysis showed significantly enhanced interstitial collagen levels in adult ToF as compared to young (<2yr.) controls (p < 0.05) and young ToF patients (p < 0.01). In PA/VSD patients however, interstitial collagen levels did not change as compared to respective age matched controls. Interestingly, peri-vascular collagen deposition increased in young ToF patients as compared to young and adult controls. In contrast, the staining levels of both collagens and fibronectin were lower in the PA/VSD patients as compared to respective controls. Interstitial expression of fibronectin in ToF patents remained unchanged. RT-PCR analysis for collagen la, collagen III and fibronectin expression levels in PA/VSD patients showed only higher collagen III mRNA expression in PA/VSD patients as compared to respective age matched controls. We conclude that the enhanced myocyte size and increased extracellular matrix deposition and disarray of collagen and fibronectin are signs of fibrosis during RVH that contribute to diminished right ventricular function in patients with ToF and PA/VSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogers AJ, van der Laarse A, Vliegen HW, Quaegebeur JM, Hollaar L, Egas JM, Cornelisse CJ, Rohmer J, Huysmans HA. 1988. Assessment of hypertrophy in myocardial biopsies taken during correction of congenital heart disease. Thorac Cardiovasc Surgeon 36:137–140.

    Article  CAS  Google Scholar 

  2. Pozzi M, Trivedi DB, Kitchiner D, Arnold RA. 2000. Tetralogy of Fallot: what operation, at which age. Eur J Cardiothorac Surg 17:631–636.

    Article  PubMed  CAS  Google Scholar 

  3. Starnes VA, Luciani GB, Latter DA, Griffin ML. 1994. Current surgical management of tetralogy of Fallot. Ann Thorac Surg 58:211–215.

    Article  PubMed  CAS  Google Scholar 

  4. Warner KG, Anderson JE, Fulton DR, Payne DD, Geggel RL, Marx GR. 1993. Restoration of the pulmonary valve reduces right ventricular volume overload after previous repair of tetralogy of Fallot. Circulation 88:11189–197.

    Google Scholar 

  5. Murphy JG, Gersh BJ, Mair DD, Fuster V, McGoon MD, Ilstrup DM, McGoon DC, Kirklin JW, Danielson GK. 1993. Long-term outcome in patients undergoing surgical repair of tetralogy of Fallot. N Engl J Med 329:593–599.

    Article  PubMed  CAS  Google Scholar 

  6. Schwartz SM, Gordon D, Mosca RS, Bove EL, Heidelberger KP, Kulik TJ. 1996. Collagen content in normal, pressure, and pressure-volume overloaded developing human hearts. Am J Cardiol 77:734–738.

    Article  PubMed  CAS  Google Scholar 

  7. Arai M, Matsui H, Periasamy M. 1994. Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 74:555–564.

    Article  PubMed  CAS  Google Scholar 

  8. Mitsuno M, Nakano S, Shimazaki Y, Taniguchi K, Kawamoto T, Kobayashi J, Matsuda H, Kawashima Y. 1993. Fate of right ventricular hypertrophy in tetralogy of Fallot after corrective surgery. Am J Cardiol 72:694–698.

    Article  PubMed  CAS  Google Scholar 

  9. Seliem MA, Wu YT, Glenwright K. 1995. Relation between age at surgery and regression of right ventricular hypertrophy in tetralogy of Fallot. Pediatr Cardiol 16:53–55.

    Article  PubMed  CAS  Google Scholar 

  10. Bishop SP. 1984. Structural alterations in the hypertrophied and failing myocardium. In: Functional aspects of the normal hypertrophied and failing heart. Eds. FL Abel and WH Hewman, 278–300. The Hague: Martinus Nijhoff Publishing.

    Chapter  Google Scholar 

  11. Boheler KR, Dillmann WH. 1988. Cardiac response to pressure overload in the rat: the selective alteration of in vitro directed RJSTA translation products. Circulation Res 63:448–456.

    Article  PubMed  CAS  Google Scholar 

  12. Brand T, Sharma HS, Schaper W 1993. Expression of nuclear proto-oncogenes in isoproterenolinduced cardiac hypertrophy. J Mol Cell Cardiol 25:1325–1337.

    Article  PubMed  CAS  Google Scholar 

  13. Tomanek RJ, Torry RJ. 1994. Growth of the coronary vasculature in hypertrophy: mechanisms and model dependence. Cell Mol Biol Res 40:129–136.

    PubMed  CAS  Google Scholar 

  14. Vikstrom KL, Bohlmeyer T, Factor SM, Leinwand LA. 1998. Hypertrophy, pathology, and molecular markers of cardiac pathogenesis. Circ Res 82:773–778.

    Article  PubMed  CAS  Google Scholar 

  15. Brilla CG, Janicki JS, Weber KT. 1991. Impaired diastolic function and coronary reserve in genetic hypertension. Role of interstitial fibrosis and medial thickening of intramyocardial coronary arteries. Circ Res 69:107–115.

    Article  PubMed  CAS  Google Scholar 

  16. Brilla CG, Janicki JS, Weber KT. 1991. Cardioreparative effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation 83(5):1771–1779.

    Article  PubMed  CAS  Google Scholar 

  17. Weber KT, Brilla CG. 1991. Pathological hypertrophy and cardiac interstitium. Fibrosis and reninangiotensin-aldosterone system. Circulation 83 (6): 1849–1865.

    Article  PubMed  CAS  Google Scholar 

  18. Schwartz K, Carrier L, Mercadier JJ, Lompre AM. 1993. Molecular phenotype of the hypertrofied and failing myocardium. Circulation 87:VII5–10.

    Google Scholar 

  19. Pelouch V, Dixon IM, Golfman L, Beamish RE, Dhalla NS. 1994. Role of extracellular matrix proteins in heart function. Mol Cell Biochem 129:101–120.

    Article  Google Scholar 

  20. Ignotz RA, Massague J. 1986. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261(9):4337–4345.

    PubMed  CAS  Google Scholar 

  21. Chapman D, Weber KT, Eghbali M. 1990. Regulation of fibrillar collagen types I and III and basement membrane type IV collagen gene expression in pressure overloaded rat myocardium. Circ Res 67:787–794.

    Article  PubMed  CAS  Google Scholar 

  22. Volders PG, Willems IE, Cleutjens JP, Arends JW, Havenith MG, Daemen MJ. 1993. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol 25:1317–1323.

    Article  PubMed  CAS  Google Scholar 

  23. Bishop JE, Rhodes S, Laurent GJ, Low RB, Stirewalt WS. 1994. Increased collagen synthesis and decreased collagen degradation in right ventricular hypertrophy induced by pressure overload. Cardiovasc Res 28:1581–1585.

    Article  PubMed  CAS  Google Scholar 

  24. Weber KT, Sun Y, Tyagi SC, Cleutjens JP. 1994. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 26:279–292.

    Article  PubMed  CAS  Google Scholar 

  25. Caspari PG, Gibson K, Harris P. 1976. Changes in myocardial collagen in normal development and after β-blockade. Rec Adv Card Struct Metab 7:99–104.

    CAS  Google Scholar 

  26. van Bilsen M, Chien KR. 1993. Growth and hypertrophy of the heart: towards an understanding of cardiac specific and inducable gene expression. Cardiovasc Res 27:1140–1149.

    Article  PubMed  Google Scholar 

  27. Zak R. 1973. Cell proliferation during cardiac growth. Am J Cardiol 31:211–219.

    Article  PubMed  CAS  Google Scholar 

  28. Farhadian F, Contard F, Corbier A, Barrieux A, Rappaport L, Samuel JL. 1995. Fibronectin expression during physiological and pathological cardiac growth. J Mol Cell Cardiol 27:981–990.

    Article  PubMed  CAS  Google Scholar 

  29. Borg TK, Caulfield JB. 1981. The collagen matrix of the heart. Fed Proc 20:2037–2041.

    Google Scholar 

  30. Factor SM, Robinson TF, Dominitz R, Cho S. 1986. Alterations of the myocardial skeletal framework in acute myocardial infarction with and without ventricular rupture. Am J Cardiovasc Pathol 1:91–97.

    Google Scholar 

  31. Whittaker P. 1997. Collagen and ventricular remodeling after acute myocardial infarction: concepts and hypotheses. Basic Res Cardiol 92:79–81.

    PubMed  CAS  Google Scholar 

  32. Samuel JL, Barrieux A, Dufour S, Dubus I, Contard F, Koteliansky V, Farhadian F, Marotte F, Thiery JP, Rappaport L. 1991. Accumulation of fetal fibronectin mRNAs during the development of rat cardiac hypertrophy induced by pressure overload. J Clin Invest 88:1737–1746.

    Article  PubMed  CAS  Google Scholar 

  33. McLenachan JM, Dargie HJ. 1990. Ventricular airhythmias in hypertensive left ventricular hypertrophy. Relationship to coronary artery disease, left ventricular dysfunction, and myocardial fibrosis. Am J Hypertens 3:735–740.

    PubMed  CAS  Google Scholar 

  34. Speranza ML, Valentini G, Calligaro A. 1987. Influence of fibronectin on the fibrillogenesis of type I and type III collagen. Coll Relat Res 7:115–123.

    Article  PubMed  CAS  Google Scholar 

  35. Bogers AJJC, Roofthooft M, Pisters H, Spitaels SEC, Bos E. 1994. Longterm follow-up of gamma irradiated transannular homograft patch in surgical treatment of tetralogy of Fallot. Thorac Cardiovasc Surgeon 42:337–339.

    Article  CAS  Google Scholar 

  36. Hokken RB, Bogers AJJC, Spitaels SEC, Hess J, Bos E. 1995. Pulmonary homograft insertion after repair of pulmonary stenosis. J Heart Valve Dis 4:182–186.

    PubMed  CAS  Google Scholar 

  37. Bancroff JD, Cook HC. 1994. Manual of Histological Techniques and Their Diagnostic Aplication, Eds. JD Bancroff and HC Cook, 53. London: Churchil livingstone.

    Google Scholar 

  38. Sharma HS, van Heugten HA, Goedbloed MA, Verdouw PD, Lamers JM. 1994. Angiotensin II induced expression of transcription factors precedes increase in Transforming Growth Factor-β mRNA in neonatal cardiac fibroblasts. Biochem Biophys Res Comm 205:105–112.

    Article  PubMed  CAS  Google Scholar 

  39. Bernard MP, Chu ML, Myers JC, Ramirez F, Eikenberry EF, Prockop DJ. 1983. Nucleotide sequence of complementary deoxyribonucleic acids for the pro alpha 1 chain of human type 1 procollagen. Statistical evaluation of structures that are conserved during evolution. Biochem 22:5213–5223.

    Article  CAS  Google Scholar 

  40. Ala-Kokko L, Kontusaari S, Baldwin CT, Kuivaniemi H, Prockop DJ. 1989. Structure of cDNA clones coding for the entire prepro alpha 1 chain of human type III procollagen. Differences in protein structure from type I procollagen and conservation of codon preferences. Biochem J 260: 509–516.

    PubMed  CAS  Google Scholar 

  41. Kornblihtt AR, Vibe-Petersen K, Baralle FE. 1983. Isolation and characterization of cDNA clones for human and bovine fibronectins. Proc Nad Acad Sci USA 80(11):3218–3222.

    Article  CAS  Google Scholar 

  42. Yamaguchi T, Iwano M, Kubo A, Hirayama T, Akai Y, Horii Y, Fujimoto T, Hamaguchi T, Kurumatani N, Motomiya Y, Dohi K. 1996. IL-6 mRNA synthesis by peripheral blood mononuclear cells (PBMC) in patients with chronic renal failure. Clin Exp Immunol 103:279–328.

    Article  PubMed  CAS  Google Scholar 

  43. Peters TH, Sharma HS, Yilmaz E, Bogers AJ. 1999. Quantitative analysis of collagens and fibronectin expression in human right ventricular hypertrophy. Ann NY Acad Sci 874:278–285.

    Article  PubMed  CAS  Google Scholar 

  44. Sharma HS, Peters THF, Bogers AJJC. 2000. Angiogenesis and fibrosis during right ventricular hypertrophy in human tetralogy of Fallot. In: The hypertrophied heart, Eds. N Takeda, M Nagano and NS Dhalla, 227–241. Boston, USA: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  45. Kawai S, Okada R, Kitamura K, Suzuki A, Saito S. 1984. A morphometrical study of myocardial disarray associated with right ventricular outflow tract obstruction. Jpn Circ J 48:445–456.

    Article  PubMed  CAS  Google Scholar 

  46. Limoto DS, Covell JW, Harper E. 1988. Increase in crosslinking of type I and type III collagens associated with volume-overloaded hypertrophy. Circ Res 63:399–408.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari S. Sharma M.Phil., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peters, T.H.F., Klompe, L., Bogers, J.J.C., Sharma, H.S. (2002). Molecular Phenotype of the Developing Heart with a Congenital Anomaly. In: Ostadal, B., Nagano, M., Dhalla, N.S. (eds) Cardiac Development. Progress in Experimental Cardiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0967-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0967-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5328-7

  • Online ISBN: 978-1-4615-0967-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics