Skip to main content

Differences in Calcium Handling and Regulatory Mechanisms between Neonatal and Adult Hearts

  • Chapter
Cardiac Development

Summary

Although the neonatal heart develops less contractile force in comparison to the adult heart, it is much more tolerant with respect to ischemia-reperfusion injury, occurrence of Ca2+-paradox and catecholamine-induced cardiotoxicity. By employing 5 day old neonatal and 250 day old adult rats, we have shown that the density of L-type Ca2+-channels as Well as the activities of sarcolemmal Na+-Ca2+ exchanger and Ca2+-pump were higher in the neonatal heart. On the other hand, basal and isoproterenol-stimulated adenylyl cyclase activities as well as sarcolemmal Na+-K+ ATPase and 3H-ouabain binding activities in the neonatal hearts were lower in comparison to the adult hearts. The immaturity of sarcoplasmic reticulum in the neonatal heart was evident from the low Ca2+-pump, Ca2+-release and 3H-ryanodine binding activities in comparison to the adult heart. While Ca2+-uptake activity in neonatal heart mitochondria was higher, mitochondrial ATPase activity was lower when compared to those in the adult heart. These data provide evidence that the Ca2+-handling abilities and regulatory mechanisms in neonatal and adult hearts are different from each other and these differences may explain the weakness of cardiac function as well as increased tolerance of the neonatal heart to different pathophysiological interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dhalla NS, Ziegelhoffer A, Harrow JAC. 1977. Regulatory role of membrane systems in heart function. Can J Physiol Pharmacol 55:1211–1234.

    Article  PubMed  CAS  Google Scholar 

  2. Dhalla NS, Das PK, Sharma GP. 1978. Subcellular basis of contractile failure. J Mol Cell Cardiol 10:363–385.

    Article  PubMed  CAS  Google Scholar 

  3. Chapman RA. 1979. Excitation-contraction coupling in cardiac muscles. Prog Biophys Mol Biol 35:1–52.

    Article  PubMed  CAS  Google Scholar 

  4. Lullman H, Peters T. 1979. Plasmalemmal calcium in cardiac excitation-contraction coupling in heart muscle. Prog Pharmacol 2:1–57.

    Google Scholar 

  5. Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE. 1982. Calcium movements in relation to heart function. Basic Res Cardiol 77:117–139.

    Article  PubMed  CAS  Google Scholar 

  6. Tsien RW. 1983. Calcium channels in excitable cell membranes. Annu Rev Physiol 45:341–358.

    Article  PubMed  CAS  Google Scholar 

  7. Reuter H. 1985. Calcium movements through cardiac cell membranes. Med Res Rev 5:427–440.

    Article  PubMed  CAS  Google Scholar 

  8. Carafoli E. 1987. Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433.

    Article  PubMed  CAS  Google Scholar 

  9. Dhalla NS, Dixon IMC, Beamish RE. 1991. Biochemical basis of heart function and contractile failure. J Appl Cardiol 6:7–30.

    Google Scholar 

  10. Carafoli E, Chiesi M. 1992. Calcium pumps in the plasma and intracellular membranes. Curr Top Cell Regul 32:209–241.

    PubMed  CAS  Google Scholar 

  11. Dhalla NS, Wang X, Beamish RE. 1996. Intracellular calcium handling in normal and failing hearts. Exptl Clin Cardiol 1:7–20.

    Google Scholar 

  12. Jarmakani JM, Nakanishi T, George BL, Bers DM. 1982. The effect of extracellular calcium on myocardial mechanical function in the neonatal rabbit. Dev Pharmacol Ther 5:1–52.

    PubMed  CAS  Google Scholar 

  13. Katz AM. 1991. Maturational changes in excitation-contraction coupling in mammalian myocardium. J Am Cell Cardiol 17:218–225.

    Article  Google Scholar 

  14. Ostadalova I, Kolar F, Ostadal B, Rohlicek J, Prochazka J. 1993. Early postnatal development on contractile performance and responsiveness to calcium, verapamil and ryanodine in the isolated rat heart. J Mol Cell Cardiol 25:733–740.

    Article  PubMed  CAS  Google Scholar 

  15. Nijjar MS, Dhalla NS. 1997. Biochemical basis of calcium-handling in developing myocardium. In B Ostadal, M Nagano and NS Dhalla (eds), The Developing Heart. Philadelphia: Lippincott-Raven Publishers, pp. 189–217.

    Google Scholar 

  16. Sulakhe PV, Dhalla NS. 1970. Excitation-contraction coupling in heart. IV. Energy-dependent calcium transport in the myocardium. Life Sci 9:1363–1370.

    Article  CAS  Google Scholar 

  17. Seguchi M, Harding JA, Jarmakani JM. 1986. Developmental change in the function of sarcoplasmic reticulum. J Mol Cell Cardiol 18:189–195.

    Article  PubMed  CAS  Google Scholar 

  18. Bers DM, Philipson KD, Langer GA. 1981. Cardiac contractility and sarcolemmal calcium binding in several cardiac muscle preparation. Am J Physiol 240:H576–583.

    PubMed  CAS  Google Scholar 

  19. Ostadal B, Beamish RE, Barwinsky J, Dhalla NS. 1989. Ontogenetic development of cardiac sensitivity to catecholamines. J Appl Cardiol 4:467–486.

    Google Scholar 

  20. Ostadal B, Ostadalova I, Dhalla NS. 1999. Development of cardiac sensitivity to oxygen deficiency: Comparative and ontogenetic aspects. Physiol Rev 79:635–659.

    PubMed  CAS  Google Scholar 

  21. Steinberg C, Notterman DA. 1994. Pharmacokinetics of cardiovascular drugs in children. Inotropes and vasopressors. Clin Pharmacokinet 27:345–367.

    Article  PubMed  CAS  Google Scholar 

  22. Hanson GL, Schilling WP, Michael LH. 1993. Sodium-potassium pump and sodium-calcium exchange in adult and neonatal canine cardiac sarcolemmal. Am J Physiol 264:H320–H326.

    PubMed  CAS  Google Scholar 

  23. Meno H, Jarmakani JM, Philipson KD. 1988. Sarcolemmal calcium kinetics in the neonatal heart. J Mol Cell Cardiol 20:585–591.

    Article  PubMed  CAS  Google Scholar 

  24. Balaguru D, Haddock PS, Puglisi JL, Bers DM, Coetzee WA, Artman M. 1997. Role of the sarcoplasmic reticulum in contraction and relaxation of immature rabbit ventricular myocytes. J Mol Cell Cardiol 29:2747–2757.

    Article  PubMed  CAS  Google Scholar 

  25. Chen F, Ding S, Lee BS, Wetzel GT. 2000. Sarcoplasmic reticulum Ca(2+) ATPase and cell contraction in developing rabbit heart. J Mol Cell Cardiol 32:745–755.

    Article  PubMed  CAS  Google Scholar 

  26. Pibadeau-Dumas A, Brady M, Boateng SY, Schwartz K, Boheler KR. 1999. Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2) gene products are regulated post-transcriptionally during rat cardiac development.

    Google Scholar 

  27. Ju H, Scammel-La Fleurt, Dixon IMC. 1996. Altered mRNA abundance of calcium transport genes in cardiac myocytes induced by angiotensin II. J Mol Cell Cardiol 28:1119–1128.

    Article  PubMed  CAS  Google Scholar 

  28. Wibo M, Bravo G, Godfraind T. 1991. Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4-dihyropyridine and ryanodine receptors. Circ Res 68:662–673.

    Article  PubMed  CAS  Google Scholar 

  29. Hanson GL, Schilling WP, Michael LH. 1993. Sodium-potassium pump and sodium-calcium exchange in adult and neonatal canine cardiac sarcolemmal. Am J Physiol 264:H320-H326.

    PubMed  CAS  Google Scholar 

  30. Lucchesi PA, Sweadner KJ. 1991. Postnatal changes in Na,K-ATPase isoform expression in rat cardiac ventricle. Conservation of biphasic ouabain affinity. J Biol Chem 266:9327–9331.

    PubMed  CAS  Google Scholar 

  31. Bassani RA, Fagian MM, Bassani JW, Vercesi AE. 1998. Changes in calcium uptake rate by rat cardiac mitochondria during postnatal development. J Mol Cell Cardiol 30:2013–2023.

    Article  PubMed  CAS  Google Scholar 

  32. Dixon IMC, Lee SL, Dhalla NS. 1990. Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res 66:782–788.

    Article  PubMed  CAS  Google Scholar 

  33. Dixon IMC, Hata T, Dhalla NS. 1992. Sarcolemmal Na+-K+ ATPase activity in congestive heart failure due to myocardial infarction. Am J Physiol 262:C664–C671.

    PubMed  CAS  Google Scholar 

  34. Dixon IMC, Hata T, Dhalla NS. 1992. Sarcolemmal Ca2+-transport in congestive heart failure due to myocardial infarction in rats. Am J Physiol 262:H1387-H1394.

    PubMed  CAS  Google Scholar 

  35. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS. 1983. Defective sarcoplasmic reticular calcium trans- port in diabetic cardiomyopathy. Am J Physiol 244:E528–E535.

    PubMed  CAS  Google Scholar 

  36. Osada M, Netticadan T, Tamura K, Dhalla NS. 1998. Modification of ischemia-reperfusion-induced changes in cardiac sarcoplasmic reticulum by preconditioning. Am J Physiol 247:H2025–H2034.

    Google Scholar 

  37. Pierce GN, Dhalla NS. 1985. Heart mitochondrial function in chronic experimental diabetes in rats. Can J Cardiol 1:48–54.

    PubMed  CAS  Google Scholar 

  38. Sethi R, Dhalla KS, Beamish RE, Dhalla NS. 1997. Differential changes in left and right ventricular adenylyl cyclase activities in congestive heart failure. Am J Physiol 272:H884–H893.

    PubMed  CAS  Google Scholar 

  39. Persad S, Elimban V, Siddiqui F, Dhalla NS. 1999. Alterations in cardiac membrane p-adrenoceptor and adenylyl cyclase due to hypochlorous acid. J Mol Cell Cardiol 31:101–111.

    Article  PubMed  CAS  Google Scholar 

  40. Temsah RM, Netticadan T, Chapman D, Takeda S, Mochizuki S, Dhalla NS. 1999. Alterations in sarcoplasmic reticulum function and gene expression in ischemia-reperfused rat heart. Am J Physiol 277:H584–H594.

    PubMed  CAS  Google Scholar 

  41. Dhalla NS, Panagia V, Singal PK, Makino N, Dixon IMC, Eyolfson DA. 1988. Alterations in heart membrane calcium transport during the development of ischemia-reperfusion injury. J Mol Cell Cardiol 20 (Suppl. II):3–13.

    Article  PubMed  CAS  Google Scholar 

  42. Temsah RM, Dyck C, Netticadan T, Chapman D, Elimban V, Dhalla NS. 2000. Effect of β adrenoceptor blockers on sarcoplasmic reticular function and gene expression in the ischemic-reperfused heart. J Pharmacol Exp Therap 293:15–23.

    CAS  Google Scholar 

  43. Riva E, Hearse DJ. 1993. Age-dependent changes in myocardial susceptibility to ischemic injury. Cardioscience 4:85–92.

    PubMed  CAS  Google Scholar 

  44. Kohman LJ, Veit LJ. 1991. Neonatal myocardium resists reperfusion injury. J Surg Res 51:133–137.

    Article  PubMed  CAS  Google Scholar 

  45. Pridjian AK, Levitsky S, Krukenkamp I, Silverman NA, Feinberg H. 1987. Developmental changes in reperfusion injury. A comparison of intracellular cation accumulation in the newborn, neonatal and adult heart. J Thorac Cardiovasc Surg 93:428–433.

    PubMed  CAS  Google Scholar 

  46. Murashita T, Borgers M, Hearse DJ. 1992. Developmental changes in tolerance to ischaemia in the rabbit heart: disparity between interpretations of structural, enzymatic and functional indices of injury. J Mol Cell Cardiol 24:1143–1154.

    Article  PubMed  CAS  Google Scholar 

  47. Quantz M, T chervenkov C, Chiu RC. 1992. Unique responses of immature hearts to ischemia. Functional recovery versus initiation of contracture. J Thorac Cardiovasc Surg 103:927–935.

    PubMed  CAS  Google Scholar 

  48. Grosso MA, Banerjee A, St Cyr JA, Rogers KB, Brown JM, Clarke DR, Campbell DN, Harken AH. 1992. Cardiac 5’-nucleotidase activity increases with age and inversely relates to recovery from ischemia. J Thorac Cardiovasc Surg 103:206–209.

    PubMed  CAS  Google Scholar 

  49. Wittnich C. 1992. Age-related differences in myocardial metabolism affects response to ischemia. Age in heart tolerance to ischemia. Am J Cardiovasc Pathol 4:175–180.

    PubMed  CAS  Google Scholar 

  50. Hiramatsu T, Zund G, Schermerhorn ML, Shinoka T, Miura T, Mayer JE Jr. 1995. Age differences in effects of hypothermic ischemia on endothelial and ventricular function. Ann Thorac Surg 60 (Suppl 6):S501–S504.

    Article  PubMed  CAS  Google Scholar 

  51. Uemura S, Young H, Matsuoka S, Nakanishi T, Jarmakani JM. 1985. Calcium paradox in the neona- tal heart. Can J Cardiol 1:114–120.

    PubMed  CAS  Google Scholar 

  52. Elz JS, Nayler WG. 1987. Quantification of calcium paradox in neonatal rat hearts. Am J Physiol 253:H1358–H1364.

    PubMed  CAS  Google Scholar 

  53. Alto LE, Dhalla NS. 1979. Myocardial cation contents during induction of the calcium paradox. Am J Physiol 237:H713–H719.

    PubMed  CAS  Google Scholar 

  54. Yates JC, Dhalla NS. 1975. Structural and functional changes associated with failure and recovery of hearts after perfusion with Ca++-free medium. J Mol Cell Cardiol 7:91–103.

    Article  PubMed  CAS  Google Scholar 

  55. Dhalla NS, Elmoselhi AB, Hata T, Makino N. 2000. Status of myocardial antioxidants in ischemiareperfusion injury. Cardiovasc Res 47:446–456.

    Article  PubMed  CAS  Google Scholar 

  56. Dhalla NS, Temsah RM, Netticadan T. 2000. Role of oxidative stress in cardiovascular diseases. J Hypertension 18:655–673.

    Article  CAS  Google Scholar 

  57. Dhalla NS, Golfman L, Takeda S, Takeda N, Nagano M. 1999. Evidence for the role of oxidative stress in acute ischemic heart disease: A brief review. Can J Cardiol 15:587–593.

    PubMed  CAS  Google Scholar 

  58. Sun LS. 1999. Regulation of myocardial beta-adrenergic receptor function in adult and neonatal rabbits. Biol Neonate 76:181–192.

    Article  PubMed  CAS  Google Scholar 

  59. Shyu KG, Kuan P, Chang ML, Wang BW, Huang FY 2000. Effects of norepinephrine on apoptosis in rat neonatal cardiomyocytes. J Formos Med Assoc 99:412–418.

    PubMed  CAS  Google Scholar 

  60. Dhalla KS, Rupp H, Beamish RE, Dhalla NS. 1996. Mechanisms of alterations in cardiac membrane Ca2+ transport due to excess catecholamines. Cardiovasc Drugs Therapy 10:231–238.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naranjan S. Dhalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dhalla, N.S., Ostadalova, I., Ostadal, B., Mengi, S.A., Elimban, V., Nijjar, M.S. (2002). Differences in Calcium Handling and Regulatory Mechanisms between Neonatal and Adult Hearts. In: Ostadal, B., Nagano, M., Dhalla, N.S. (eds) Cardiac Development. Progress in Experimental Cardiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0967-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0967-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5328-7

  • Online ISBN: 978-1-4615-0967-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics