Skip to main content

Sarcoplasmic Reticulum Function in the Developing Heart

  • Chapter
Cardiac Development

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 4))

  • 94 Accesses

Summary

In view of the critical role of sarcoplasmic reticulum (SR) in regulating Ca2+-movements and thereby modulating cardiac contractility in the adult hearts, several studies have been carried out to understand its contribution in cardiac contraction and relaxation processes at early stages of myocardial development. The contractile characteristics of the neonatal heart are weak in comparison to the adult heart. Sparse sympathetic innervation and an immature SR were suggested to be factors contributing to reduced contractility of the neonatal heart. SR Ca2+-uptake and release activities as well as expression of the SR Ca2+-cycling proteins have been reported to increase after birth. The presence of protein kinases and phosphatases in early stages of development indicate a role for the regulatory mechanisms in maintaining SR Ca2+-transport. However, increased expression of phosphatases in the early stages suggest enhanced dephosphorylation of SR proteins. There is a lack of effects of Ca2+-channel inhibitors on neonatal hearts and increased Na+-Ca2+-exchanger function in the fetal and neonatal in comparison to the adult heart. Thus, in view of the reduced SR function at early stages of development, the SR does not appear to play a major role in the regulation of cardiac contractility during the fetal and neonatal stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE. 1982. Calcium movements in relation to heart function. Basic Res Cardiol 77:117–139.

    Article  PubMed  CAS  Google Scholar 

  2. Dhalla NS, Temsah RM. 2001. Sarcoplasmic reticulum and cardiac oxidative stress: an emerging target for heart disease. Emerging Therapeutic Targets 5:205–217.

    Article  CAS  Google Scholar 

  3. Fabiato A. 1983. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–14.

    PubMed  CAS  Google Scholar 

  4. Wier WG. 1990. Cytoplasmic [Ca2+] in mammalian ventricle: dynamic control by cellular processes. Annu Rev Physiol 52:467–485.

    Article  PubMed  CAS  Google Scholar 

  5. Lewartowski B, Wolska B. 1993. The effect of thapsigargin on sarcoplasmic reticulum Ca2+ content and contractions of single myocytes of rat ventricular myocardium. J Physiol Pharmacol 44:243–250.

    PubMed  Google Scholar 

  6. Lipp P, Pott L, Callewaert G, Carmeliet E. 1992. Calcium transients caused by calcium entry are influenced by the sarcoplasmic reticulum in guinea-pig atrial myocytes. J Physiol (Lond) 454:321–338.

    CAS  Google Scholar 

  7. Bassani JW, Bassani RA, Bers DM. 1994. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol (Lond) 476:279–293.

    CAS  Google Scholar 

  8. Negretti N, O’Neill SC, Eisner DA. 1993. The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes. Cardiovasc Res 27:1826–1830.

    Article  PubMed  CAS  Google Scholar 

  9. Bers, DM. Ca transport during contraction and relaxation in mammalian ventricular muscle. In Hasenfuss G and Just H, eds. Alterations of excitation-contraction coupling in the failing human heart. New York, Springer-Verlag. 1998, 1–16.

    Chapter  Google Scholar 

  10. Jewett PH, Leonard SD, Sommer JR. 1973. Chicken cardiac muscle: its elusive extended junctional sarcoplasmic reticulum and sarcoplasmic reticulum fenestrations. J Cell Biol 56:595–600.

    Article  PubMed  CAS  Google Scholar 

  11. Forbes MS, Sperelakis N. 1983. The membrane systems and cytoskeletal elements of mammalian myocardial cells. Cell Muscle Motil 3:89–155.

    PubMed  CAS  Google Scholar 

  12. Sommer JR, Waugh RA. 1976. The ultrastructure of the mammalian cardiac muscle cell-with special emphasis on the tubular membrane systems. A review. Am J Pathol 82:192–232.

    PubMed  CAS  Google Scholar 

  13. Rousseau E, Smith JS, Meissner G. 1987. Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am J Physiol 253:C364–C368.

    PubMed  CAS  Google Scholar 

  14. Marks AR. 1997. Intracellular calcium-release channels: regulators of cell life and death. Am J Physiol 272:H597–H605.

    PubMed  CAS  Google Scholar 

  15. Marks AR, Tempst P, Hwang KS, Taubman MB, Inui M, Chadwick C, Fleischer S, Nadal-Ginard B. 1989. Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDNA from skeletal muscle sarcoplasmic reticulum. Proc Natl Acad Sci USA 86:8683–8687.

    Article  PubMed  CAS  Google Scholar 

  16. Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH. 1990. Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 265:13472–13483.

    PubMed  CAS  Google Scholar 

  17. Takeshima H, Yamazawa T, Ikemoto T, Takekura H, Nishi M, Noda T, Iino M. 1995. Ca2+-induced Ca2+ release in myocytes from dyspedic mice lacking the type-1 ryanodine receptor. EMBO J 14: 2999–3006.

    PubMed  CAS  Google Scholar 

  18. Inui M, Saito A, Fleischer S. 1987. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J Biol Chem 262:15637–15642.

    PubMed  CAS  Google Scholar 

  19. Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T 1989. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339:439–445.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR. 1997. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 272:23389–23397.

    Article  PubMed  CAS  Google Scholar 

  21. Stokes DL, Wagenknecht T. 2000. Calcium transport across the sarcoplasmic reticulum: structure and function of Ca2+-ATPase and the ryanodine receptor. Eur J Biochem 267:5274–5279.

    Article  PubMed  CAS  Google Scholar 

  22. Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR. 1991. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem 266:11144–11152.

    PubMed  CAS  Google Scholar 

  23. Takasago T, Imagawa T, Furukawa K, Ogurusu T, Shigekawa M. 1991. Regulation of the cardiac ryanodine receptor by protein kinase-dependent phosphorylation. J Biochem (Tokyo) 109:163–170.

    CAS  Google Scholar 

  24. Arai M, Matsui H, Periasamy M. 1994. Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 74:555–564.

    Article  PubMed  CAS  Google Scholar 

  25. Brandi CJ, Green NM, Korczak B, MacLennan DH. 1986. Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell 44:597–607.

    Article  CAS  Google Scholar 

  26. Zarain-Herzberg A, MacLennan DH, Periasamy M. 1990. Characterization of rabbit cardiac sarco(endo)plasmic reticulum Ca2+-ATPase gene. J Biol Chem 265:4670–4677.

    PubMed  CAS  Google Scholar 

  27. Lytton J, Zarain-Herzberg A, Periasamy M, MacLennan DH. 1989. Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+-ATPase. J Biol Chem 264:7059–7065.

    PubMed  CAS  Google Scholar 

  28. Anger M, Samuel JL, Marotte F, Wuytack F, Rappaport L, Lompre AM. 1994. In situ mRNA distribution of sarco(endo)plasmic reticulum Ca2+-ATPase isoforms during ontogeny in the rat. J Mol Cell Cardiol 26:539–550.

    Article  PubMed  CAS  Google Scholar 

  29. Lompre AM, Anger M, Levitsky D. 1994. Sarco(endo)plasmic reticulum calcium pumps in the cardiovascular system: function and gene expression. J Mol Cell Cardiol 26:1109–1121.

    Article  PubMed  CAS  Google Scholar 

  30. Nagai R, Zarain-Herzberg A, Brandi CJ, Fujii J, Tada M, MacLennan DH, Alpert NR, Periasamy M. 1989. Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86:2966–2970.

    Article  PubMed  CAS  Google Scholar 

  31. de la BD, Levitsky D, Rappaport L, Mercadier JJ, Marotte F, Wisnewsky C, Brovkovich V, Schwartz K, Lompre AM. 1990. Function of the sarcoplasmic reticulum and expression of its Ca2+-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res 66:554–564.

    Article  Google Scholar 

  32. Molecular cloning and characterization of a Ca2+ + Mg2+-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. Regulation of its expression by pressure overload and developmental stage. J Clin Invest 83:1102–1108.

    Article  PubMed  CAS  Google Scholar 

  33. Adult forms of the Ca2+-ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J Biol Chem 262:3768–3774.

    Google Scholar 

  34. Ultrastructural localization of the Ca2++ Mg2+-dependent ATPase of sarcoplasmic reticulum in rat skeletal muscle by immunoferritin labeling of ultrathin frozen sections. J Cell Biol 92:409–416.

    Article  PubMed  CAS  Google Scholar 

  35. Fabiato A, Fabiato F. 1979. Calcium and cardiac excitation-contraction coupling. Annu Rev Physiol 41:473–484.

    Article  PubMed  CAS  Google Scholar 

  36. Tada M, Yamamoto T, Tonomura Y. 1978. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev 58:1–79.

    PubMed  CAS  Google Scholar 

  37. Toyofuku T, Curotto Kurzydlowski K, Narayanan N, MacLennan DH. 1994. Identification of Ser38 as the site in cardiac sarcoplasmic reticulum Ca2+-ATPase that is phosphorylated by Ca2+/calmodulin-dependent protein kinase. J Biol Chem 269:26492–26496.

    PubMed  CAS  Google Scholar 

  38. Simmerman HK, Jones LR. 1998. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78:921–947.

    PubMed  CAS  Google Scholar 

  39. Bidlack JM, Shamoo AE. 1980. Adenosine 3’,5’-monophosphate-dependent phosphorylation of a 6000 and a 22,000 dalton protein from cardiac sarcoplasmic reticulum. Biochim Biophys Acta 632:310–325.

    Article  PubMed  CAS  Google Scholar 

  40. Jones LR, Besch HR, Jr., Fleming JW, McConnaughey MM, Watanabe AM. 1979. Separation of vesicles of cardiac sarcolemma from vesicles of cardiac sarcoplasmic reticulum. Comparative biochemical analysis of component activities. J Biol Chem 254:530–539.

    PubMed  CAS  Google Scholar 

  41. Will H, Levchenko TS, Levitsky DO, Smirnov VN, Wollenberger A. 1978. Partial characterization of protein kinase-catalyzed phosphorylation of low molecular weight proteins in purified preparations of pigeon heart sarcolemma and sarcoplasmic reticulum. Biochim Biophys Acta 543:175–193.

    Article  PubMed  CAS  Google Scholar 

  42. Wegener AD, Jones LR. 1984. Phosphorylation-induced mobility shift in phospholamban in sodium dodecyl sulfate-polyacrylamide gels. Evidence for a protein structure consisting of multiple identical phosphorylatable subunits. J Biol Chem 259:1834–1841.

    PubMed  CAS  Google Scholar 

  43. Wegener AD, Simmerman HK, Liepnieks J, Jones LR. 1986. Proteolytic cleavage of phospholamban purified from canine cardiac sarcoplasmic reticulum vesicles. Generation of a low resolution model of phospholamban structure. J Biol Chem 261:5154–5159.

    PubMed  CAS  Google Scholar 

  44. Jones LR, Simmerman HK, Wilson WW, Gurd FR, Wegener AD. 1985. Purification and characterization of phospholamban from canine cardiac sarcoplasmic reticulum. J Biol Chem 260:7721–7730.

    PubMed  CAS  Google Scholar 

  45. Kimura Y, Kurzydlowski K, Tada M, MacLennan DH. 1997. Phospholamban inhibitory function is activated by depolymerization. J Biol Chem 272:15061–15064.

    Article  PubMed  CAS  Google Scholar 

  46. Le Peuch CJ, Haiech J, Demaille JG. 1979. Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium-calmodulin-dependent phosphorylations. Biochemistry 18:5150–5157.

    Article  PubMed  Google Scholar 

  47. Simmerman HK, Collins JH, Theibert JL, Wegener AD, Jones LR. 1986. Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem 261:13333–13341.

    PubMed  CAS  Google Scholar 

  48. Tada M, Kirchberger MA. 1975. Regulation of calcium transport by cyclic AMP. A proposed mechanism for the beta-adrenergic control of myocardial contractility. Acta Cardiol 30:231–237.

    PubMed  CAS  Google Scholar 

  49. Mitchell RD, Simmerman HK, Jones LR. 1988. Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J Biol Chem 263:1376–1381.

    PubMed  CAS  Google Scholar 

  50. Jorgensen AO, Campbell KP. 1984. Evidence for the presence of calsequestrin in two structurally different regions of myocardial sarcoplasmic reticulum. J Cell Biol 98:1597–1602.

    Article  PubMed  CAS  Google Scholar 

  51. Jorgensen AO, Shen AC, Campbell KP. 1985. Ultrastructural localization of calsequestrin in adult rat atrial and ventricular muscle cells. J Cell Biol 101:257–268.

    Article  PubMed  CAS  Google Scholar 

  52. Yano K, Zarain-Herzberg A. 1994. Sarcoplasmic reticulum calsequestrin: structural and functional properties. Mol Cell Biochem 135:61–70.

    Article  PubMed  CAS  Google Scholar 

  53. Arai M, Alpert NR, Periasamy M. 1991. Cloning and characterization of the gene encoding rabbit cardiac calsequestrin. Gene 109:275–279.

    Article  PubMed  CAS  Google Scholar 

  54. Fliegel L, Ohnishi M, Carpenter MR, Khanna VK, Reithmeier RA, MacLennan DH. 1987. Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc Natl Acad Sci USA 84:1167–1171.

    Article  PubMed  CAS  Google Scholar 

  55. MacLennan DH, Wong PT. 1971. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci USA 68:1231–1235.

    Article  PubMed  CAS  Google Scholar 

  56. Cala SE, Jones LR. 1991. Phosphorylation of cardiac and skeletal muscle calsequestrin isoforms by casein kinase II. Demonstration of a cluster of unique rapidly phosphorylated sites in cardiac calsequestrin. J Biol Chem 266:391–398.

    PubMed  CAS  Google Scholar 

  57. Friedman WF. 1972. The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Disease 15:87–111.

    Article  CAS  Google Scholar 

  58. Davies P, Dewar J, Tynan M, Ward R. 1975. Post-natal developmental changes in the length-tension relationship of cat papillary muscles. J Physiol 253:95–102.

    PubMed  CAS  Google Scholar 

  59. Friedman WF, Pool PE, Jacobowitz D, Seagren SC, Braunwald E. 1968. Sympathetic innervation of the developing rabbit heart. Biochemical and histochemical comparisons of fetal, neonatal, and adult myocardium. Circ Res 23:25–32.

    Article  PubMed  CAS  Google Scholar 

  60. Maylie JG. 1982. Excitation-contraction coupling in neonatal and adult myocardium of cat. Am J Physiol 242:H834–H843.

    PubMed  CAS  Google Scholar 

  61. Fabiato A, Fabiato F. 1978. Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and new-born rat ventricles. Ann N Y Acad Sci 307:491–522.

    Article  PubMed  CAS  Google Scholar 

  62. Fabiato A. 1982. Calcium release in skinned cardiac cells: variations with species, tissues, and development. Fed Proc 41:2238–2244.

    PubMed  CAS  Google Scholar 

  63. Hoerter J, Mazet F, Vassort G. 1981. Perinatal growth of the rabbit cardiac cell: possible implications for the mechanism of relaxation. J Mol Cell Cardiol 13:725–740.

    Article  PubMed  CAS  Google Scholar 

  64. Fitzgerald M, Neylon CB, Marks AR, Woodcock EA. 1994. Reduced ryanodine receptor content in isolated neonatal cardiomyocytes compared with the intact tissue. J Mol Cell Cardiol 26:1261–1265.

    Article  PubMed  CAS  Google Scholar 

  65. Ramesh V, Kresch MJ, Katz AM, Kim DH. 1995. Characterization of Ca2+-release channels in fetal and adult rat hearts. Am J Physiol 269:H778–H782.

    PubMed  CAS  Google Scholar 

  66. Xu A, Hawkins C, Narayanan N. 1997. Ontogeny of sarcoplasmic reticulum protein phosphorylation by Ca2+-calmodulin-dependent protein kinase. J Mol Cell Cardiol 29:405–418.

    Article  PubMed  CAS  Google Scholar 

  67. Protasi F, Sun XH, Franzini-Armstrong C. 1996. Formation and maturation of the calcium release apparatus in developing and adult avian myocardium. Dev Biol 173:265–278.

    Article  PubMed  CAS  Google Scholar 

  68. Nayler WG, Fassold E. 1977. Calcium accumulating and ATPase activity of cardiac sarcoplasmic reticulum before and after birth. Cardiovasc Res 11:231–237.

    Article  PubMed  CAS  Google Scholar 

  69. Mahony L, Jones LR. 1986. Developmental changes in cardiac sarcoplasmic reticulum in sheep. J Biol Chem 261:15257–15265.

    PubMed  CAS  Google Scholar 

  70. Pegg W, Michalak M. 1987. Differentiation of sarcoplasmic reticulum during cardiac myogenesis. Am J Physiol 252:H22–H31.

    PubMed  CAS  Google Scholar 

  71. Gombosova I, Boknik P, Kirchhefer U, Knapp J, Luss H, Muller FU, Muller T, Vahlensieck U, Schmitz W, Bodor GS, Neumann J. 1998. Postnatal changes in contractile time parameters, calcium regulatory proteins, and phosphatases. Am J Physiol 274:H2123–H2132.

    PubMed  CAS  Google Scholar 

  72. Szymanska G, Grupp IL, Slack JP, Harrer JM, Kranias EG. 1995. Alterations in sarcoplasmic reticulum calcium uptake, relaxation parameters and their responses to beta-adrenergic agonists in the developing rabbit heart. J Mol Cell Cardiol 27:1819–1829.

    Article  PubMed  CAS  Google Scholar 

  73. Jorgensen AO, Bashir R. 1984. Temporal appearance and distribution of the Ca2+ + Mg2+ ATPase of the sarcoplasmic reticulum in developing chick myocardium as determined by immunofluorescence labeling. Dev Biol 106:156–165.

    Article  PubMed  CAS  Google Scholar 

  74. Moorman AF, Vermeulen JL, Koban MU, Schwartz K, Lamers WH, Boheler KR. 1995. Patterns of expression of sarcoplasmic reticulum Ca2+-ATPase and phospholamban mRNAs during rat heart development. Circ Res 76:616–625.

    Article  PubMed  CAS  Google Scholar 

  75. Lompre AM, Lambert F, Lakatta EG, Schwartz K. 1991. Expression of sarcoplasmic reticulum Ca2+-ATPase and calsequestrin genes in rat heart during ontogenic development and aging. Circ Res 69:1380–1388.

    Article  PubMed  CAS  Google Scholar 

  76. Artman M. 1992. Sarcolemmal Na+-Ca2+ exchange activity and exchanger immunoreactivity in developing rabbit hearts. Am J Physiol 263:H1506–H1513.

    PubMed  CAS  Google Scholar 

  77. Wetzel GT, Chen F, Klitzner TS. 1995. Na+/Ca2+ exchange and cell contraction in isolated neonatal and adult rabbit cardiac myocytes. Am J Physiol 268:H1723–H1733.

    PubMed  CAS  Google Scholar 

  78. Wetzel GT, Chen F, Klitzner TS. 1991. L- and T-type calcium channels in acutely isolated neonatal and adult cardiac myocytes. Pediatr Res 30:89–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naranjan S. Dhalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Temsah, R.M., Netticadan, T., Dhalla, N.S. (2002). Sarcoplasmic Reticulum Function in the Developing Heart. In: Ostadal, B., Nagano, M., Dhalla, N.S. (eds) Cardiac Development. Progress in Experimental Cardiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0967-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0967-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5328-7

  • Online ISBN: 978-1-4615-0967-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics