Skip to main content

Developmental Changes of Sarcoplasmic Reticular Calcium Ion Transport and Phospholamban in Rat Heart

  • Chapter
Cardiac Development

Summary

This comparative study investigates the relationship between sarcoplasmic reticulum (SR) calcium (Ca2+) ATPase transport activity and phospholamban (PLB) phosphorylation in whole cardiac homogenates around birth and during postnatal development until weaning. At fetal day 20, the rate of homogenate oxalate-supported Ca2+ uptake was 23% of that at postnatal day 6 (0.34 ± 0.08 vs 1.46 ± 0.37 nmoles Ca2+/mg wet ventricular weight/min, respectively; P < 0.05). This was accompanied by a 2-fold gain in heart mass. Between postnatal days 6 and 21, there occurred a further 4-fold increase in heart mass which was accompanied by only a 1.3-fold increase in SR Ca2+ transport activity. Levels of phosphorylated PLB formed in vitro in the presence of radiolabelled ATP and catalytic subunit of protein kinase A increased approx. 4-fold between fetal day 20 and postnatal day 21. In this early developmental period, SR Ca2+-transport values were linearly related to the respective 32P-PLB levels suggesting coordinated developmental changes of SR Ca2+ ATPase and PLB. Developmental changes in SR Ca2+ transport and 32P-PLB levels were thyroid hormone(TH)-dependent as revealed from analysis of these parameters in 21-day-old rats with experimentally induced eu-, hypo- and hyperthyroid states. It appears that TH-dependent changes in the phosphorylation of PLB play a major role for the increase in SR Ca2+ transport activity between birth and weaning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clubb FJ, Jr, Bell PD, Kriseman JD, Bishop SP. 1987. Myocardial cell growth and blood pressure development in neonatal spontaneously hypertensive rats. Lab Invest 56:189–197.

    PubMed  Google Scholar 

  2. Morgan HE, Gordon EE, Kira Y, Chua HL, Russo LA, Peterson CJ, McDermott PJ, Watson PA. 1987. Biochemical mechanisms of cardiac hypertrophy. Annu Rev Physiol 49:533–543.

    Article  PubMed  CAS  Google Scholar 

  3. Fozzard H. 1977. Heart: Excitation-contraction coupling. Annu Rev Physiol 41:201–220.

    Article  Google Scholar 

  4. Maylie JG. 1982. Excitation-contraction coupling in neonatal and adult myocardium of cat. Am J Physiol 242:H834–H843.

    PubMed  CAS  Google Scholar 

  5. Nakanishi T, Seguchi M, Takao A. 1988. Development of the myocardial contractile system. Experientia 44:936–944.

    Article  PubMed  CAS  Google Scholar 

  6. Chemla D, Lecarpentier Y, Martin JL, Clergue M, Antonetti A, Hatt PY. 1986. Relationship between inotropy and relaxation in rat myocardium. Am J Physiol 250:H1008–1016.

    PubMed  CAS  Google Scholar 

  7. Komuro I, Kurabayashi M, Shibazaki Y, Takaku F, Yazaki Y 1989. Molecular cloning and characterization of a Ca2+ + Mg2+-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. Regulation of its expression by pressure overload and developmental stage. J Clin Invest 83: 1102–1108.

    Article  PubMed  CAS  Google Scholar 

  8. Lompre AM, Lambert F, Lakatta EG, Schwartz K. 1991. Expression of sarcoplasmic reticulum Ca2+-ATPase and calsequestrin genes in rat heart during ontogenic development and aging. Circ Res 69:1380–1388.

    Article  PubMed  CAS  Google Scholar 

  9. Nayler WG, Fassold E. 1977. Calcium accumulating and ATPase activity of cardiac sarcoplasmic reticulum before and after birth. Cardiovasc Res 11:231–237.

    Article  PubMed  CAS  Google Scholar 

  10. Vetter R, Kemsies C, Schulze W. 1987. Sarcolemmal Na+-Ca2+ exchange and sarcoplasmic reticulum Ca2+ uptake in several cardiac preparations. Biomed Biochim Acta 46:S375–S381.

    PubMed  CAS  Google Scholar 

  11. Fisher DJ, Tate CA, Phillips S. 1992. Developmental regulation of the sarcoplasmic reticulum calcium pump in the rabbit heart. Pediatr Res 31:474–479.

    Article  PubMed  CAS  Google Scholar 

  12. Cernohorsky J, Kolář F, Pelouch V, Korecky B, Vetter R. 1998. Thyroid control of sarcolemmal Na+/Ca2+ exchanger and SR Ca2+-ATPase in developing rat heart. Am J Physiol 275:H264–H273.

    PubMed  CAS  Google Scholar 

  13. Katz AM, Nash-Adler P, Watras J, Messineo FC, Takenaka H, Louis CF. 1982. Fatty acid effects on calcium influx and efflux in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. Biochim Biophys Acta 687:17–26.

    Article  PubMed  CAS  Google Scholar 

  14. Martonosi A, Donley J, Halpin RA. 1968. Sarcoplasmic reticulum. 3. The role of phospholipids in the adenosine triphosphatase activity and Ca++ transport. J Biol Chem 243:61–70.

    PubMed  CAS  Google Scholar 

  15. Colyer J. 1993. Control of the calcium pump of cardiac sarcoplasmic reticulum. A specific role for the pentameric structure of phospholamban? Cardiovasc Res 27:1766–1771.

    Article  PubMed  CAS  Google Scholar 

  16. Wegener AD, Simmerman HK, Lindemann JP, Jones LR. 1989. Phospholamban phosphorylation in intact ventricles. Phosphorylation of serine 16 and threonine 17 in response to beta-adrenergic stimulation. J Biol Chem 264:11468–11474.

    PubMed  CAS  Google Scholar 

  17. Tada M, Katz AM. 1982. Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Annu Rev Physiol 44:401–423.

    Article  PubMed  CAS  Google Scholar 

  18. Lindemann JP, Watanabe AM. 1985. Phosphorylation of phospholamban in intact myocardium. Role of Ca2+-calmodulin-dependent mechanisms. J Biol Chem 260:4516–4525.

    PubMed  CAS  Google Scholar 

  19. Freestone N, Singh J, Krause E-G, Vetter R. 1996. Early postnatal changes in sarcoplasmic reticulum calcium transport function in spontaneously hypertensive rats. Mol Cell Biochem 163/164:57–66.

    Article  Google Scholar 

  20. Vetter R, Studer R, Reinecke H, Kolář F, Ostadalova I, Drexler H. 1995. Reciprocal changes in the postnatal expression of the sarcolemmal Na+-Ca2+-exchanger and SERCA2 in rat heart. J Mol Cell Cardiol 27:1689–1701.

    Article  PubMed  CAS  Google Scholar 

  21. Arai M, Otsu K, MacLennan DH, Periasamy M. 1992. Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development. Am J Physiol 262:C614–C620.

    PubMed  CAS  Google Scholar 

  22. Feher JJ, Briggs FN, Hess ML. 1980. Characterization of cardiac sarcoplasmic reticulum from ischemic myocardium: comparison of isolated sarcoplasmic reticulum with unfractionated homogenates. J Mol Cell Cardiol 12:427–432.

    Article  PubMed  CAS  Google Scholar 

  23. Solaro RJ, Briggs FN. 1974. Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle. Calcium binding. Circ Res 34:531–540.

    Article  PubMed  CAS  Google Scholar 

  24. Karczewski P, Vetter R, Holtzhauer M, Krause EG. 1986. Indirect technique for the estimation of cAMP-dependent and Ca2+/calmodulin-dependent phospholamban phosphorylation state in canine heart in vivo. Biomed Biochim Acta 45:S227–S231.

    PubMed  CAS  Google Scholar 

  25. Karczewski P, Bartel S, Krause EG. 1990. Differential sensitivity to isoprenaline of troponin I and phospholamban phosphorylation in isolated rat hearts. Biochem J 266:115–122.

    PubMed  CAS  Google Scholar 

  26. Kirby ML. 1988. Role of extracardiac factors in heart development. Experientia 44:944–951.

    Article  PubMed  CAS  Google Scholar 

  27. Napolitano R, Vittone L, Mundina C, Chiappe de Cingolani G, Mattiazzi A. 1992. Phosphorylation of phospholamban in the intact heart. A study on the physiological role of the Ca2+-calmodulin-dependent protein kinase system. J Mol Cell Cardiol 24:387–396.

    Article  PubMed  CAS  Google Scholar 

  28. Hawkins C, Xu A, Narayanan N. 1994. Sarcoplasmic reticulum calcium pump in cardiac and slow twitch skeletal muscle but not fast twitch skeletal muscle undergoes phosphorylation by endogenous and exogenous Ca2+/calmodulin-dependent protein kinase. Characterization of optimal conditions for calcium pump phosphorylation. J Biol Chem 269:31198–31206.

    PubMed  CAS  Google Scholar 

  29. Vigouroux E. 1976. Dynamic study of postnatal thyroid function in the rat. Acta Endocrinol (Copenh) 83:752–762.

    CAS  Google Scholar 

  30. Kolář F, Seppet EK, Vetter R, Procházka J, Grünermel J, Zilmer K, Oštádal B. 1992. Thyroid control of contractile function and calcium handling in neonatal rat heart. Pflugers Arch 21:26–31.

    Google Scholar 

  31. Wibo M, Kolář F, Zheng L, Godfraind T. 1995. Influence of thyroid status on postnatal maturation of calcium channels, β-adrenoreceptors and cation transport ATPases in rat ventricular tissue. J Mol Cell Cardiol 27:1731–1743.

    Article  PubMed  CAS  Google Scholar 

  32. Beekman RE, van Hardeveld C, Simonides WS. 1989. On the mechanism of the reduction by thyroid hormone of β-adrenergic relaxation rate stimulation in rat heart. Biochem J 259:229–236.

    PubMed  CAS  Google Scholar 

  33. Black SC, McNeill JH, Katz S. 1993. Cardiac sarcoplasmic reticulum calcium transport activity of thyroidectomized rats: the role of endogenous myocardial acylcarnitines and calcium pump protein. Pharmacology 46:130–141.

    Article  PubMed  CAS  Google Scholar 

  34. Boerth SR, Artman M. 1996. Thyroid hormone regulates Na+-Ca2+ exchanger expression during postnatal maturation and in adult rabbit ventricular myocardium. Cardiovasc Res 31:E145–E152.

    PubMed  CAS  Google Scholar 

  35. Kiss E, Jakab G, Kranias EG, Edes I. 1994. Thyroid hormone-induced alterations in phospholamban protein expression. Circ Res 75:245–251.

    Article  PubMed  CAS  Google Scholar 

  36. Nagai R, Zarain-Herzberg A, Brandi CJ, Fujii J, Tada M, MacLennan DH, Alpert NR, Periasamy M. 1989. Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86:2966–2970.

    Article  PubMed  CAS  Google Scholar 

  37. Arai M, Otsu K, MacLennan DH, Alpert NR, Periasamy M. 1991. Effect of thyroid hormone on the expression of messenger RNA encoding sarcoplasmic reticulum proteins. Circ Res 69:266–276.

    Article  PubMed  CAS  Google Scholar 

  38. Williams LT, Lefkowitz RJ, Watanabe AM, Hathaway DR, Besch HR. 1977. Thyroid hormone regulation of β adrenergic receptor number. J Biol Chem 252:2787–2789.

    PubMed  CAS  Google Scholar 

  39. Limas CJ. 1978. Enhanced phosphorylation of myocardial sarcoplasmic reticulum in experimental hyperthyroidism. Am J Physiol 234:H426–H431.

    PubMed  CAS  Google Scholar 

  40. Kimura Y, Otsu K, Nishida K, Kuzuya T, Tada M. 1994. Thyroid hormone enhances Ca2+ pumping activity of the cardiac sarcoplasmic reticulum by increasing Ca2+-ATPase and decreasing phospholamban expression. J Mol Cell Cardiol 26:1145–1154.

    Article  PubMed  CAS  Google Scholar 

  41. Wibo M, Feron O, Zheng L, Maleki M, Kolář F, Godfraind T. 1998. Thyroid status and postnatal changes in subsarcolemmal distribution and isoform expression of rat cardiac dihydropyridine receptors. Cardiovasc Res 37:151–159.

    Article  PubMed  CAS  Google Scholar 

  42. Rohrer D, Dillmann WH. 1988. Thyroid hormone markedly increases the mRNA coding for sarcoplasmic reticulum Ca2+-ATPase in the rat heart. J Biol Chem 63:6941–6944.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vetter, R., Rehfeld, U., Reissfelder, C., Weiß, W., Kolář, F., Paul, M. (2002). Developmental Changes of Sarcoplasmic Reticular Calcium Ion Transport and Phospholamban in Rat Heart. In: Ostadal, B., Nagano, M., Dhalla, N.S. (eds) Cardiac Development. Progress in Experimental Cardiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0967-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0967-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5328-7

  • Online ISBN: 978-1-4615-0967-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics