Androgen Mediated Regulation of the G1-S Transition in Prostate Cancer

  • Karen Knudsen
  • Anne F. Fribourg
  • Christin Petre
  • Yelena Wetherill


Prostatic adenocarcinoma is the most frequently diagnosed malignancy in the United States and is the second leading cause of cancer deaths among men (Landis et al., 1998). Most prostate cancers are treated by androgen ablation, since androgen is a required mitogen for the survival and proliferation of prostate cells (Cunha et al., 1987; Jenster, 1999; Klotz, 2000; Labrie, 2000). This treatment is initially effective, as upon androgen withdrawal most prostate cancer cells undergo cell cycle arrest or cell death (Denmeade et al., 1996; Murphy et al., 1991; Westin et al., 1995). Unfortunately, androgen independent tumors arise and lead to patient morbidity. Determination of how androgen exerts its effect as a mitogen in early prostate cancer, and how the androgen requirement is subverted in advanced disease is the focus of intensive research.


Prostate Cancer Androgen Receptor Prostate Cancer Cell LNCaP Cell Kinase Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaltomaa, S., Eskelinen, M., and Lipponen, P. 1999. Expression of cyclin A and D proteins in prostate cancer and their relation to clinopathological variables and patient survival. Prostate 38, 175–82.PubMedCrossRefGoogle Scholar
  2. Aaltomaa, S., Lipponen, P., Eskelinen, M., Ala-Opas, M., and Kosma, V.M. 1999. Prognostic value and expression of p21(wafl/cipl) protein in prostate cancer. Prostate 39, 8–15.PubMedCrossRefGoogle Scholar
  3. Agus, D.B., Cordon-Cardo, C, Fox, W., Drobnjak, M., Koff, A., Golde, D.W., and Scher, H.I. 1999. Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J Natl Cancer Inst 91, 1869–76.PubMedCrossRefGoogle Scholar
  4. Baretton, G.B., Klenk, U., Diebold, J., Schmeller, N., and Lohrs, U. 1999. Proliferation-and apoptosis-associated factors in advanced prostatic carcinomas before and after androgen deprivation therapy: prognostic significance of p21/WAFl/CIPl expression. Br J Cancer 80, 546–55.PubMedCrossRefGoogle Scholar
  5. Brinkmann, A.O., Blok, L.J., de Ruiter, P.E., Doesburg, P., Steketee, K., Berrevoets, CA., and Trapman, J. 1999. Mechanisms of androgen receptor activation and function. J Steroid Biochem Mol Biol 69, 307–13.PubMedCrossRefGoogle Scholar
  6. Brooks, J.D., Bova, G.S., and Isaacs, W.B. 1995. Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinomas. Prostate 26, 35–9.PubMedCrossRefGoogle Scholar
  7. Cairns, P., Okami, K., Halachmi, S., Halachmi, N., Esteller, M., Herman, J.G., Jen, J., Isaacs, W.B., Bova, G.S., and Sidransky, D. 1997. Frequent inactivation of PTEN/MMAC 1 in primary prostate cancer. Cancer Res 57, 4997–5000.PubMedGoogle Scholar
  8. Chen, T., Wang, L.H., and Farrar, W.L. 2000. Interleukin 6 activates androgen receptormediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res 60, 2132–5.PubMedGoogle Scholar
  9. Chen, W., Weghorst, CM., Sabourin, CL., Wang, Y., Wang, D., Bostwick, D.G., and Stoner, G.D. 1996a. Absence of pl6/MTSl gene mutations in human prostate cancer. Carcinogenesis 17, 2603–7.PubMedCrossRefGoogle Scholar
  10. Chen, Y., Martinez, L. A., LaCava, M., Coghlan, L., and Conti, C.J. 1998. Increased cell growth and tumorigenicity in human prostate LNCaP cells by overexpression to cyclin Dl. Oncogene 16, 1913–20.PubMedCrossRefGoogle Scholar
  11. Chen, Y., Robles, A.I., Martinez, L.A., Liu, F., Gimenez-Conti, I.B., and Conti, C.J. 1996b. Expression of Gl cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors in androgen-induced prostate proliferation in castrated rats. Cell Growth Differ 7, 1571–8.PubMedGoogle Scholar
  12. Chung, T.D., Yu, J.J., Spiotto, M.T., Bartkowski, M., and Simons, J.W. 1999. Characterization of the role of IL-6 in the progression of prostate cancer. Prostate 38, 199–207.PubMedCrossRefGoogle Scholar
  13. Cordon-Cardo, C., Koff, A., Drobnjak, M., Capodieci, P., Osman, I., Millard, S.S., Gaudin, P. B., Fazzari, M., Zhang, Z.F., Massague, J., and Scher, H.I. 1998. Distinct altered patterns of p27KIPl gene expression in benign prostatic hyperplasia and prostatic carcinoma. J Natl Cancer Inst 90, 1284–91.PubMedCrossRefGoogle Scholar
  14. Craft, N., Shostak, Y., Carey, M., and Sawyers, C.L. 1999. A mechanism for hormoneindependent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5, 280–5.PubMedCrossRefGoogle Scholar
  15. Culig, Z., Hobisch, A., Cronauer, M.V., Radmayr, C., Trapman, J., Hittmair, A., Bartsch, G., and Klocker, H. 1994. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 54, 5474–8.PubMedGoogle Scholar
  16. Cunha, G.R., Donjacour, A.A., Cooke, P.S., Mee, S., Bigsby, R.M., Higgins, S.J., and Sugimura, Y. 1987. The endocrinology and developmental biology of the prostate. Endocr Rev 8, 338–62.PubMedCrossRefGoogle Scholar
  17. Cunningham, J.M., Shan, A., Wick, M.J., McDonnell, S.K., Schaid, D.J., Tester, D.J., Qian, J., Takahashi, S., Jenkins, R.B., Bostwick, D.G., and Thibodeau, S.N. 1996. Allelic imbalance and microsatellite instability in prostatic adenocarcinoma. Cancer Res 56, 4475–82.PubMedGoogle Scholar
  18. Darne, C, Veyssiere, G., and Jean, C. 1998. Phorbol ester causes Iigand-independent activation of the androgen receptor. Eur J Biochem 256, 541–9.PubMedCrossRefGoogle Scholar
  19. de Ruiter, P. E., Teuwen, R., Trapman, J., Dijkema, R., and Brinkmann, A.O. 1995. Synergism between androgens and protein kinase-C on androgen-regulated gene expression. Mol Cell Endocrinol 110, R1–6.PubMedCrossRefGoogle Scholar
  20. Denmeade, S.R., Lin, X.S., and Isaacs, J.T. 1996. Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28, 251–65.PubMedCrossRefGoogle Scholar
  21. Di Cristofano. A., Pesce, B., Cordon-Cardo, C, Pandolfi, P.P. Pten is essential for embryonic development and tumor suppression. Nat Genet 19, 348–55Google Scholar
  22. Di Cristofano, A., De Acetis, M., Koff, A., Cordon-Cardo, C, and Pandolfi, P.P. 2001. Pten and p27KIPl cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 27, 222–4.PubMedCrossRefGoogle Scholar
  23. Drobnjak, M., Osman, I., Scher, H.I., Fazzari, M., and Cordon-Cardo, C. 2000. Overexpression of cyclin Dl is associated with metastatic prostate cancer to bone. Clin Cancer Res 6, 1891–5.PubMedGoogle Scholar
  24. Fernandez, P.L., Arce, Y., Farre, X., Martinez, A., Nadal, A., Rey, M.J., Peiro, N., Campo, E., and Cardesa, A. 1999. Expression of p27/Kipl is down-regulated in human prostate carcinoma progression. J Pathol 187, 563–6.PubMedCrossRefGoogle Scholar
  25. Fribourg, A.F., Knudsen, K.E., Strobeck, M.W., Lindhorst, CM., and Knudsen, E.S. 2000. Differential requirements for ras and the retinoblastoma tumor suppressor protein in the androgen dependence of prostatic adenocarcinoma cells. Cell Growth Differ 11, 361–72.PubMedGoogle Scholar
  26. Furuya, Y., Lin, X.S., Walsh, J.C., Nelson, W.G., and Isaacs, J.T. 1995. Androgen ablationinduced programmed death of prostatic glandular cells does not involve recruitment into a defective cell cycle or p53 induction. Endocrinology 136, 1898–906.PubMedCrossRefGoogle Scholar
  27. Gao, J., and Isaacs, J.T. 1998. Development of an androgen receptor-null model for identifying the initiation site for androgen stimulation of proliferation and suppression of programmed (apoptotic) death of PC-82 human prostate cancer cells. Cancer Res 58, 3299–306.PubMedGoogle Scholar
  28. Greenberg, N.M., DeMayo, F., Finegold, M.J., Medina, D., Tilley, W.D., Aspinall, J.O., Cunha, G.R., Donjacour, A.A., Matusik, R.J., and Rosen, J.M. 1995. Prostate cancer in a transgenic mouse. Proc Natl Acad Sei U S A 92, 3439–43.CrossRefGoogle Scholar
  29. Gu, K., Mes-Masson, A.M., Gauthier, J., and Saad, F. 1998. Analysis of the pl6 tumor suppressor gene in early-stage prostate cancer. Mol Carcinog 21,164–70.PubMedCrossRefGoogle Scholar
  30. Gumbiner, L.M., Gumerlock, P.H., Mack, P.C., Chi, S.G., deVere White, R.W., Mohler, J.L., Pretlow, T.G., and Tricoli, J.V. 1999. Overexpression of cyclin Dl is rare in human prostate carcinoma. Prostate 38, 40–5.PubMedCrossRefGoogle Scholar
  31. Gupta, C, Chandorkar, A., and Nguyen, A.P. 1996. Activation of androgen receptor in epidermal growth factor modulation of fetal mouse sexual differentiation. Mol Cell Endocrinol 123, 89–95.PubMedCrossRefGoogle Scholar
  32. Han, E.K., Lim, J.T., Arber, N., Rubin, M.A., Xing, W.Q., and Weinstein, I.B. 1998. Cyclin Dl expression in human prostate carcinoma cell lines and primary tumors. Prostate 35, 95–101.PubMedCrossRefGoogle Scholar
  33. Harbour, J.W., and Dean, D.C. 2000. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14, 2393–409.PubMedCrossRefGoogle Scholar
  34. Harbour, J.W., Luo, R. X., Dei Santi, A., Postigo, A.A., and Dean, D.C. 1999. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through Gl. Cell 98, 859–69.PubMedCrossRefGoogle Scholar
  35. Hayward, S.W., Rosen, M.A., and Cunha, G.R. 1997. Stromal-epithelial interactions in the normal and neoplastic prostate. Br J Urol 79 Suppl 2, 18–26.PubMedGoogle Scholar
  36. Henshall, S.M., Quinn, D.I., Lee, C.S., Head, D.R., Golovsky, D., Brenner, P.C., Delprado, W., Strieker, P.D., Grygiel, J.J., and Sutherland, R.L. 2001. Overexpression of the cell cycle inhibitor pl6INK4A in high-grade prostatic intraepithelial neoplasia predicts early relapse in prostate cancer patients. Clin Cancer Res 7, 544–50.PubMedGoogle Scholar
  37. Hobisch, A., Eder, I. E., Putz, T., Horninger, W., Bartsch, G., Klocker, H., and Culig, Z. 1998. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 58, 4640–5.PubMedGoogle Scholar
  38. Horoszewicz, J.S., Leong, S.S., Chu, T.M., Wajsman, Z.L., Friedman, M., Papsidero, L., Kim, U., Chai, L.S., Kakati, S., Arya, S.K., and Sandberg, A.A. 1980. The LNCaP cell line-a new model for studies on human prostatic carcinoma. Prog Clin Biol Res 37, 115–32.PubMedGoogle Scholar
  39. Jarrard, D.F., Sarkar, S., Shi, Y., Yeager, T.R., Magrane, G., Kinoshita, H., Nassif, N., Meisner, L., Newton, M.A., Waldman, F.M., and Reznikoff, C.A. 1999. pl6/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells. Cancer Res 59, 2957–64.PubMedGoogle Scholar
  40. Jenster, G. 1999. The role of the androgen receptor in the development and progression of prostate cancer. Semin Oncol 26, 407–21.PubMedGoogle Scholar
  41. Kallio, P.J., Janne, O.A., and Palvimo, J.J. 1994. Agonists, but not antagonists, alter the conformation of the hormone-binding domain of androgen receptor. Endocrinology 134, 998–1001.PubMedCrossRefGoogle Scholar
  42. Kim, I.Y., Kim, J.H., Zelner, D.J., Ahn, HJ., Sensibar, J.A., and Lee, C. 1996. Transforming growth factor-beta 1 is a mediator of androgen-regulated growth arrest in an androgen-responsive prostatic cancer cell line, LNCaP. Endocrinology 137, 991–9.PubMedCrossRefGoogle Scholar
  43. Klotz, L. 2000. Hormone therapy for patients with prostate carcinoma. Cancer 88, 3009–14.PubMedCrossRefGoogle Scholar
  44. Knudsen, E.S., and Wang, J.Y. 1996. Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites. J Biol Chem 271, 8313–20.PubMedCrossRefGoogle Scholar
  45. Knudsen, K.E., Arden, K.C., and Cavenee, W.K. 1998. Multiple Gl regulatory elements control the androgen-dependent proliferation of prostatic carcinoma cells. J Biol Chem 273, 20213–22.PubMedCrossRefGoogle Scholar
  46. Knudsen, K.E., Cavenee, W.K., and Arden, K.C. 1999a. D-type cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Res 59, 2297–301.PubMedGoogle Scholar
  47. Knudsen, K.E., Fribourg, A.F., Strobeck, M.W., Blanchard, J.M., and Knudsen, E.S. 1999b. Cyclin A is a functional target of retinoblastoma tumor suppressor protein-mediated cell cycle arrest. J Biol Chem 274, 27632–41.PubMedCrossRefGoogle Scholar
  48. LaBaer, J., Garrett, M.D., Stevenson, L.F., Slingerland, J.M., Sandhu, C, Chou, H.S., Fattaey, A., and Harlow, E. 1997. New functional activities for the p21 family of CDK inhibitors. Genes Dev 11, 847–62.PubMedCrossRefGoogle Scholar
  49. Labrie, F. 2000. Screening and early hormonal treatment of prostate cancer are accumulating strong evidence and support. Prostate 43, 215–22.PubMedCrossRefGoogle Scholar
  50. Landis, S.H., Murray, T., Bolden, S., and Wingo, P.A. 1998. Cancer Statistics, 1998. CA Cancer J. Clin 48, 6–29.PubMedCrossRefGoogle Scholar
  51. Lee, C.T., Capodieci, P., Osman, I., Fazzari, M., Ferrara, J.. Scher, H.I., and Cordon-Cardo, C. 1999. Overexpression of the cyclin-dependent kinase inhibitor pi6 is associated with tumor recurrence in human prostate cancer. Clin Cancer Res 5, 977–83.PubMedGoogle Scholar
  52. Li, D.M., and Sun, H. 1998. PTEN/MMAC1/TEPI suppresses the tumorigenicity and induces Gl cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sei U S A 95, 15406–11.CrossRefGoogle Scholar
  53. Li, P, Nicosia, S.V., and Bai, W. 2001. Antagonism between PTEN/MMAC1/TEP-1 and androgen receptor in growth and apoptosis of prostatic cancer cells. J. Biol. Chem. 16 March.Google Scholar
  54. Liaw, D., Marsh, D.J., Li, J., Dahia, P.L., Wang, S.I., Zheng, Z., Bose, S., Call, K.M., Tsou, H.C., Peacocke, M., Eng, C, Parsons, R. 1997. Nat Genet. 16, 64–7.PubMedCrossRefGoogle Scholar
  55. Lin, A.W., Barradas, M., Stone, J.C., van Aelst, L., Serrano, M., and Lowe, S.W. 1998. Premature senescence involving p53 and pi6 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12, 3008–19.PubMedCrossRefGoogle Scholar
  56. Lou, W., Ni, Z., Dyer, K., Tweardy, D.J., and Gao, A.C. 2000. Interleukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate 42, 239–42.PubMedCrossRefGoogle Scholar
  57. Lu, S., Liu, M., Epner, D.E., Tsai, S.Y., and Tsai, M.J. 1999. Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Mol Endocrinol 13, 376–84.PubMedCrossRefGoogle Scholar
  58. Lu, S., Tsai, S.Y., and Tsai, M.J. 1997. Regulation of androgen-dependent prostatic cancer cell growth: androgen regulation of CDK2, CDK4, and CKI pl6 genes. Cancer Res 57, 4511–6.PubMedGoogle Scholar
  59. Lukas, J., Muller, H., Bartkova, J., Spitkovsky, D., Kjerulff, A.A., Jansen-Durr, P., Strauss, M., and Bartek, J. 1994. DNA tumor virus oncoproteins and retinoblastoma gene mutations share the ability to relieve the cell’s requirement for cyclin Dl function in Gl. J Cell Biol 125, 625–38.PubMedCrossRefGoogle Scholar
  60. Macri, E., and Loda, M. 1998. Role of p27 in prostate carcinogenesis. Cancer Metastasis Rev 17,337–44.PubMedCrossRefGoogle Scholar
  61. Marsh, D.J., Dahia, P.L., Zheng, Z., Liaw, D., Parsons, R., Gorlin, R.J., Eng, C. 1997. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet. 16, 333–4.PubMedCrossRefGoogle Scholar
  62. Mashai, R.D., Lester, S., Corless, C, Richie, J.P., Chandra, R., Propert, K.J., and Dutta, A. 1996. Expression of cell cycle-regulated proteins in prostate cancer. Cancer Res 56, 4159–63.Google Scholar
  63. Masumori, N., Thomas, T.Z., Chaurand, P., Case, T., Paul, M., Kasper, S., Caprioli, R.M., Tsukamoto, T., Shappell, S.B., and Matusik, R.J. 2001. A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res 61, 2239–49.PubMedGoogle Scholar
  64. McMenamin, M.E., Soung, P., Perera, S., Kaplan, I., Loda, M., and Sellers, W.R. 1999. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res. 59, 4291–6.PubMedGoogle Scholar
  65. Medema, R.H., Kops, G.J., Bos, J.L., Burgering, B.M. 2000. AFX-like forkhead transcription factors mediated cell-cycle regulation by Ras and PKB through p27Kipl. Nature 404, 782–7.PubMedCrossRefGoogle Scholar
  66. Murphy, W.M., Soloway, M.S., and Barrows, G.H. 1991. Pathologic changes associated with androgen deprivation therapy for prostate cancer. Cancer 68, 821–8.PubMedCrossRefGoogle Scholar
  67. Nakamura, N., Ramaswamy, S., Vazquez, F., Signoretti, S., Loda, M., and Sellers, W.R. 2000. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol. Cell Biol. 20: 8969–82.PubMedCrossRefGoogle Scholar
  68. Nazareth, L.V., and Weigel, N.L. 1996. Activation of the human androgen receptor through a protein kinase A signaling pathway. J Biol Chem 271, 19900–7.PubMedCrossRefGoogle Scholar
  69. Ohtsubo, M., Theodoras, A.M., Schumacher, J., Roberts, J.M., and Pagano, M. 1995. Human Cyclin E, a nuclear protein essential for the Gl-S transition. Mol Cell Biol. 15, 2612–24.PubMedGoogle Scholar
  70. Olapade-Olaopa, E.O., MacKay, E.H., Taub, N.A., Sandhu, D.P., Terry, T.R., and Habib, F.K. 1999. Malignant transformation of human prostatic epithelium is associated with the loss of androgen receptor immunoreactivity in the surrounding stroma. Clin Cancer Res 5, 569–76.PubMedGoogle Scholar
  71. Osman, I., Drobnjak, M., Fazzari, M., Ferrara, J., Scher, H.I., and Cordon-Cardo, C. 1999. Inactivation of the p53 pathway in prostate cancer: impact on tumor progression. Clin Cancer Res 5, 2082–8.PubMedGoogle Scholar
  72. Peterziel, H., Mink, S., Schonert, A., Becker, M., Klocker, H., and Cato, A.C. 1999. Rapid signalling by androgen receptor in prostate cancer cells. Oncogene 18, 6322–9.PubMedCrossRefGoogle Scholar
  73. Philips, A., Huet, X., Plet, A., Le Cam, L., Vie, A., and Blanchard, J. M. 1998. The retinoblastoma protein is essential for cyclin A repression in quiescent cells. Oncogene 16, 1373–81.PubMedCrossRefGoogle Scholar
  74. Phillips, S.M., Barton, CM., Lee, S.J., Morton, D.G., Wallace, D.M., Lemoine, N.R., and Neoptolemos, J.P. 1994. Loss of the retinoblastoma susceptibility gene (RBI) is a frequent and early event in prostatic tumorigenesis. Br J Cancer 70, 1252–7.PubMedCrossRefGoogle Scholar
  75. Ramaswamy, S., Nakamura, N., Vazquez, F., Batt, D.B., Perera, S., Roberts, T.B., Sellers, W.R. 1999. Regulation of Gl progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sei USA 96, 2110–5.CrossRefGoogle Scholar
  76. Ravi, R.K., McMahon, M., Yangang, Z., Williams, J.R., Dillehay, L.E., Nelkin, B.D., and Mabry, M. 1999. Raf-1-induced cell cycle arrest in LNCaP human prostate cancer cells. J Cell Biochem 72, 458–69.PubMedCrossRefGoogle Scholar
  77. Resnitzky, D., and Reed, S.I. 1995. Different roles for cyclins Dl and E in regulation of the Gl-to-S transition. Mol Cell Biol 15, 3463–9.PubMedGoogle Scholar
  78. Sadar, M.D. (1999). Androgen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways. J Biol Chem 274, 7777–83.PubMedCrossRefGoogle Scholar
  79. Sherr, C.J. 1996. Cancer cell cycles. Science 274, 1672–7.PubMedCrossRefGoogle Scholar
  80. Sherr, C.J., and Roberts, J.M. 1999. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13, 1501–12.PubMedCrossRefGoogle Scholar
  81. Shiraishi, T., Watanabe, M., Muneyuki, T., Nakayama, T., Morita, J., Ito, H., Kotake, T., and Yatani, R. 1998. A clinicopathological study of p53, p21 (WAF1/CIP1) and cyclin Dl expression in human prostate cancers. Urol Int 61, 90–4.PubMedCrossRefGoogle Scholar
  82. Sonnenschein, C, Olea, N., Pasanen, M.E., and Soto, A.M. 1989. Negative controls of cell proliferation: human prostate cancer cells and androgens. Cancer Res 49, 3474–81.PubMedGoogle Scholar
  83. Spiotto, M.T., and Chung, T.D. 2000. STAT3 mediates IL-6-induced growth inhibition in the human prostate cancer cell line LNCaP. Prostate 42, 88–98.PubMedCrossRefGoogle Scholar
  84. Stambolic, V., Suzuki, A., de la Pompa, J.L., Brothers, G.M., Mirtsos, C, Sasaki, T., Ruland, J., Penninger, J.M., Siderovski, D.P., and Mak, T.W. 1998. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39.PubMedCrossRefGoogle Scholar
  85. Tamimi, Y., Bringuier, P.P., Smit, F., van Bokhoven, A., Debruyne, F.M., and Schalken, J.A. 1996. p16 mutations/deletions are not frequent events in prostate cancer. Br J Cancer 74, 120–2.PubMedCrossRefGoogle Scholar
  86. Theodorescu, D., Broder, S.R., Boyd, J.C., Mills, S.E., and Frierson, H.F., Jr. 1997. p53, bcl-2 and retinoblastoma proteins as long-term prognostic markers in localized carcinoma of the prostate. J Urol 158, 131–7.PubMedCrossRefGoogle Scholar
  87. Tsihlias, J., Kapusta, L., and Slingerland, J. 1999. The prognostic significance of altered cyclindependent kinase inhibitors in human cancer. Annu Rev Med. 50, 401–423.PubMedCrossRefGoogle Scholar
  88. Voeller, H.J., Wilding, G., and Gelmann, E.P. 1991. v-rasH expression confers hormoneindependent in vitro growth to LNCaP prostate carcinoma cells. Mol Endocrinol 5, 209–16.PubMedCrossRefGoogle Scholar
  89. Wang, J.Y., Knudsen, E.S., and Welch, P.J. 1994. The retinoblastoma tumor suppressor protein. Adv Cancer Res 64, 25–85.PubMedCrossRefGoogle Scholar
  90. Wang, Y., Hayward, S.W., Donjacour, A.A., Young, P., Jacks, T., Sage, J., Dahiya, R., Cardiff, R.D., Day, M.L., and Cunha, G.R. 2000. Sex hormone-induced carcinogenesis in Rb-deficient prostate tissue. Cancer Res 60, 6008–17.PubMedGoogle Scholar
  91. Westin, P., Stattin, P., Damber, J.E., and Bergh, A. 1995. Castration therapy rapidly induces apoptosis in a minority and decreases cell proliferation in a majority of human prostatic tumors. Am J Pathol 146, 1368–75.PubMedGoogle Scholar
  92. Yeh, S., Lin, H.K., Kang, H Y., Thin, T.H., Lin, M.F., and Chang, C. 1999. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sei USA 96, 5458–63.CrossRefGoogle Scholar

Copyright information

© Springer Sceince+Business Media New York 2002

Authors and Affiliations

  • Karen Knudsen
    • 1
  • Anne F. Fribourg
    • 1
  • Christin Petre
    • 1
  • Yelena Wetherill
    • 1
  1. 1.University of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations