Tetrahydrobiopterin (BH4)-Mediated Neuronal Death Following Intrastriatal Kainic Acid: Implications for Parkinson’s Disease

  • Jane A. Foster
  • Robert A. Levine

Abstract

Parkinson’s disease is characterized by progressive, premature death of dopamine neurons in the pars compacta of the substantia nigra (1, 2, 3). Clinical symptoms appear when dopamine neuronal death reaches 50–60% and there is loss of 70–80% of striatal dopamine (4). The profile of dopamine neuronal death in Parkinson’s disease is progressive (5, 6), and it is thought that, after diagnosis, there is continued, gradual neuronal death over the remaining lifespan of the patient (7). Animal models of Parkinson’s disease have been developed to study mechanisms underlying nigral neuronal death and provide insights into the etiology of Parkinson’s disease. Here, we report a rat model that exhibits progressive death of nigral neurons following unilateral injection of kainic acid in the striatum. Further, we demonstrate the utility of this model to study mechanisms underlying nigral dopamine neuronal death and suggest a possible role for tetrahydrobiopterin (BH4) in long-term death of these neurons.

Keywords

Toxicity Dopamine Tyrosine Phenyl Folate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirsch E., Graybiel A.M., Agid Y.A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334: 345–348, 1988.PubMedCrossRefGoogle Scholar
  2. 2.
    German D.C., Manaye K.F., Sonsalla P.K., Brooks B.A. Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: sparing of calbindin-D28k-containing cells. Ann N Y Acad Sci 648: 42–62, 1992.PubMedCrossRefGoogle Scholar
  3. 3.
    Gibb W.R., Lees A.J. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 54: 388–396, 1991.PubMedCrossRefGoogle Scholar
  4. 4.
    Hornykiewicz O., Kish S.J. Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45: 19–34, 1987.PubMedGoogle Scholar
  5. 5.
    Schulzer M., Lee C.S., Mak E.K., Vingerhoets F.J., Calne D.B. A mathematical model of pathogenesis in idiopathic parkinsonism. Brain 117: 509–516, 1994.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee C.S., Schulzer M., Mak E.K., Snow B.J., Tsui J.K., Calne S., Hammerstad J., Calne D.B. Clinical observations on the rate of progression of idiopathic parkinsonism. Brain 117: 501–507, 1994.PubMedCrossRefGoogle Scholar
  7. 7.
    Agid Y., Ruberg M., Javoy-Agid F., Hirsch E., Raisman-Vozari R., Vyas S., Faucheux B., Michel P., Kastner A., Blanchard V., et al. Are dopaminergic neurons selectively vulnerable to Parkinson’s disease? Adv Neurol 60: 148–164, 1993.PubMedGoogle Scholar
  8. 8.
    Ungerstedt U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5: 107–110, 1968.PubMedCrossRefGoogle Scholar
  9. 9.
    Hokfelt T., Ungerstedt U. Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurones: an electron and fluorescence microscopic study with special reference to intracerebral injection on the nigro-striatal dopamine system. Brain Res 60: 269–297, 1973.PubMedCrossRefGoogle Scholar
  10. 10.
    Javoy F., Sotelo C., Herbet A., Agid Y. Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system. Brain Res 102: 201–215, 1976.PubMedCrossRefGoogle Scholar
  11. 11.
    Javitch J.A., D’Amato R.J., Strittmatter S.M., Snyder S.H. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A 82: 2173–2177, 1985.PubMedCrossRefGoogle Scholar
  12. 12.
    Langston J.W., Irwin I., Langston E.B., Forno L.S. l-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci Lett 48: 87–92, 1984.PubMedCrossRefGoogle Scholar
  13. 13.
    Burns R.S., Chiueh C.C., Markey S.P., Ebert M.H., Jacobowitz D.M., Kopin I.J. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 80: 4546–4550, 1983.PubMedCrossRefGoogle Scholar
  14. 14.
    Bezard E., Dovero S., Bioulac B., Gross C.E. Kinetics of nigral degeneration in a chronic model of MPTP-treated mice. Neurosci Lett 234: 47–50, 1997.PubMedCrossRefGoogle Scholar
  15. 15.
    Brecknell J.E., Dunnett S.B., Fawcett J.W. A quantitative study of cell death in the substantia nigra following a mechanical lesion of the medial forebrain bundle. Neuroscience 64: 219–227, 1995.PubMedCrossRefGoogle Scholar
  16. 16.
    Coyle J.T., Schwarcz R. Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature 263: 244–246, 1976.PubMedCrossRefGoogle Scholar
  17. 17.
    Coyle J.T., Molliver M.E., Kuhar M.J. In situ injection of kainic acid: a new method for selectively lesioning neural cell bodies while sparing axons of passage. J Comp Neurol 180: 301–323, 1978.PubMedCrossRefGoogle Scholar
  18. 18.
    Divac I., Markowitsch H.J., Pritzel M. Behavioral and anatomical consequences of small intrastriatal injections of kainic acid in the rat. Brain Res 151: 523–532, 1978.PubMedCrossRefGoogle Scholar
  19. 19.
    Schwarcz R., Hokfelt T., Fuxe K., Jonsson G., Goldstein M., Terenius L. Ibotenic acid-induced neuronal degeneration: a morphological and neurochemical study. Exp Brain Res 37: 199–216, 1979.PubMedCrossRefGoogle Scholar
  20. 20.
    Oppenheim R.W. Cell death during development of the nervous system. Annu Rev Neurosci 14: 453–501, 1991.PubMedCrossRefGoogle Scholar
  21. 21.
    Barde Y.A. Trophic factors and neuronal survival. Neuron 2: 1525-1534, 1989.PubMedCrossRefGoogle Scholar
  22. 22.
    Mesner P.W., Winters T.R., Green S.H. Nerve growth factor withdrawal-induced cell death in neuronal PC12 cells resembles that in sympathetic neurons. J Cell Biol 119: 1669–1680, 1992.PubMedCrossRefGoogle Scholar
  23. 23.
    Batistatou A., Greene L.A. Internucleosomal DNA cleavage and neuronal cell survival/death. J Cell Biol 122: 523–532, 1993.PubMedCrossRefGoogle Scholar
  24. 24.
    Edwards S.N., Tolkovsky A.M. Characterization of apoptosis in cultured rat sympathetic neurons after nerve growth factor withdrawal. J Cell Biol 124: 537–546, 1994.PubMedCrossRefGoogle Scholar
  25. 25.
    Spina M.B., Hyman C., Squinto S., Lindsay R.M. Brain-derived neurotrophic factor protects dopaminergic cells from 6- hydroxydopamine toxicity. Ann N Y Acad Sci 648: 348–350, 1992.PubMedCrossRefGoogle Scholar
  26. 26.
    Sauer H., Rosenblad C., Bjorklund A. Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc Natl Acad Sci U S A 92: 8935–8939, 1995.PubMedCrossRefGoogle Scholar
  27. 27.
    Winkler C., Sauer H., Lee C.S., Bjorklund A. Short-term GDNF treatment provides long-term rescue of lesioned nigral dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 16: 7206–7215, 1996.PubMedGoogle Scholar
  28. 28.
    Volpe B.T., Wildmann J., Altar C.A. Brain-derived neurotrophic factor prevents the loss of nigral neurons induced by excitotoxic striatal-pallidal lesions. Neuroscience 83: 741–748, 1998.PubMedCrossRefGoogle Scholar
  29. 29.
    Mesner P.W., Epting C.L., Hegarty J.L., Green S.H. A timetable of events during programmed cell death induced by trophic factor withdrawal from neuronal PC12 cells. J Neurosci 15: 7357–7366, 1995.PubMedGoogle Scholar
  30. 30.
    Hastings T.G., Lewis D.A., Zigmond M.J. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci U S A 93: 1956–1961, 1996.PubMedCrossRefGoogle Scholar
  31. 31.
    Haavik J., Almas B., Flatmark T. Generation of reactive oxygen species by tyrosine hydroxylase: a possible contribution to the degeneration of dopaminergic neurons? J Neurochem 68: 328–332, 1997.PubMedCrossRefGoogle Scholar
  32. 32.
    Adams J.D., Jr., Klaidman L.K., Ribeiro P. Tyrosine hydroxylase: mechanisms of oxygen radical formation. Redox Rep 3: 273–279, 1997.PubMedGoogle Scholar
  33. 33.
    Stokes A.H., Hastings T.G., Vrana K.E. Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55: 659–665, 1999.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jane A. Foster
    • 1
  • Robert A. Levine
    • 1
  1. 1.William T. Gossett Neurology LaboratoriesHenry Ford Health SystemDetroitUSA

Personalised recommendations