Skip to main content

Entrainment of the Drosophila circadian clock by light

  • Chapter
  • 181 Accesses

Abstract

The phenomenon of circadian (~24 h) rhythms has been conserved from single cell (e.g. cyanobacteria) to complex organisms including plants and mammals. Although the output varies from one species to another, ranging from the circadian production of asexual spores in Neurospora and the circadian movement of leaves in Arabidopsis to the rest:activity rhythm in Drosophila and mammals, all circadian rhythms share some basic properties 1) They can be synchronized or entrained to environmental cues such as light or temperature. 2) They freerun in constant conditions. 3) the periodicity is temperature compensated, i.e. the period does not change over a wide range of temperature. In addition, they are all thought to be produced by a circadian system that consists of an input pathway, a central clock and an output pathway. The clock is the timekeeping component that transmits its signals to the rest of the organism through the output pathway. The input pathway serves to connect the clock to the environment, conveying signals from external stimuli such as light and temperature. Much of our current understanding of how clocks are generated in mammals is derived from research done in the fruit fly Drosophila melanogaster. This chapter will focus on the molecular mechanisms that entrain the clock to light in this organism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proceedings of the National Academy of Sciences USA 1971; 68:2112–2116.

    Article  CAS  Google Scholar 

  2. Sehgal A, Price JL, Man B, Young MW. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 1994; 263:1603–1606.

    Article  PubMed  CAS  Google Scholar 

  3. Williams JA, Sehgal A. Molecular components of the Drosophila circadian clock. Annual Review of Physiology 2001; 63:729–755.

    Article  PubMed  CAS  Google Scholar 

  4. Curtin KD, Huang ZJ, Rosbash M. Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron 1995; 14:365–72.

    Article  PubMed  CAS  Google Scholar 

  5. Gekakis N, Saez L, Delahaye BA, et al. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science 1995; 270:811–815.

    Article  PubMed  CAS  Google Scholar 

  6. Marrus SB, Zeng H, Rosbash M. Effect of constant light and circadian entrainment of perS flies: evidence for light-mediated delay of the negative feedback loop in Drosophila. EMBO Journal 1996; 15:6877–6886.

    PubMed  CAS  Google Scholar 

  7. Price JL, Blau J, Rothenflugh A, Abodeely M, Kloss B, Young MW. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 1998; 94:83–95.

    Article  PubMed  CAS  Google Scholar 

  8. Rutila JE, Zeng H, Le M, Curtin KD, Hall JC, Rosbash M. The tim SL mutant of the Drosophila rhythm gene timeless manifests allele-specific interactions with period gene mutants. Neuron 1996; 17:921–929.

    Article  PubMed  CAS  Google Scholar 

  9. Yang Z, Sehgal A. Role of molecular oscillations in the Drosophila circadian clock. Neuron 2001; 29: 453–467.

    Article  PubMed  CAS  Google Scholar 

  10. Hunter-Ensor M, Ousley A, Sehgal A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell 1996; 84:677–86.

    Article  PubMed  CAS  Google Scholar 

  11. Lee C, Parikh V, Itsukaichi T, Bae K, Edery I. Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex. Science 1996; 271:1740–44.

    Article  PubMed  CAS  Google Scholar 

  12. Myers MP, Wager-Smith K, Rothenflugh A, Young MW. Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science 1996; 271:1736–40.

    Article  PubMed  CAS  Google Scholar 

  13. Zeng H, Qian Z, Myers MP, Rosbash M. A light entrainment mechanism for the Drosophila circadian clock. Nature 1996; 380:129–135.

    Article  PubMed  CAS  Google Scholar 

  14. Suri V, Zuwei Q, Hall JC, Rosbash M. Evidence that the TIM light response is relevant to light-induced phase shifts in Drosophila melanogaster. Neuron 1998; 21:225–234.

    Article  PubMed  CAS  Google Scholar 

  15. Yang Z, Emerson M, Su HS, Sehgal A. Response of the timeless protein to light correlates with behavioral entrainment and suggests a non-visual pathway for circadian photoreception. Neuron 1998; 21:215–223.

    Article  PubMed  CAS  Google Scholar 

  16. Frank KD, Zimmerman WF. Action spectra for phase shifts of a Drosophila circadian rhythm. Science 1969; 163:688–689.

    Article  PubMed  CAS  Google Scholar 

  17. Zuker CS. The biology of vision in Drosophila. Proc. Natl. Acad. Sci. USA 1996; 93:571–6.

    Article  PubMed  CAS  Google Scholar 

  18. Helfrich C. Role of the optic lobes in the regulation of the locomotor activity rhythm of Drosophila melanogaster-Behavioral analysis of neural mutants. Journal of Neurogenetics 1986;3:321–43.

    Article  PubMed  CAS  Google Scholar 

  19. Chen DM, Christianson JS, Sapp RJ, Stark WS. Visual receptor cycle in normal and period mutant Drosophila: microspectrophotometry, electrophysiology, and ultrastructural morphometry. Visual Neuroscience 1992; 9:125–35.

    Article  PubMed  CAS  Google Scholar 

  20. Egan E, Franklin T, Hilderbrand-Chae M, et al. An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants. The Journal of Neuroscience 1999; 19:3665–3673.

    PubMed  CAS  Google Scholar 

  21. Emery P, So W, Kaneko M, Hall JC, Rosbash M. CRY, a Drosophila Clock and Light-Regulated Cryptochrome, Is a Major Contributor to Circadian Rhythm Resetting and Photosensitivity. Cell 1998; 95:669–679.

    Article  PubMed  CAS  Google Scholar 

  22. Ishikawa T, Matsumoto A, Kato T, Jr., et al. DCRY is a Drosophila photoreceptor protein implicated in light entrainment of circadian rhythm. Genes to Cells 1999; 4:57–65.

    Article  PubMed  CAS  Google Scholar 

  23. Stanewsky R, Kaneko M, Emery P, et al. The cry b Mutation Identifies Cryptochrome as a Circadian Photoreceptor in Drosophila. Cell 1998; 95:681–692.

    Article  PubMed  CAS  Google Scholar 

  24. Emery P, Stanewsky R, Rosbash M, Hall JC. dCRY is a unique Drosophila circadian photoreceptor. Nature 2000; 404:456–457.

    Article  PubMed  CAS  Google Scholar 

  25. Emery P, Stanewsky R, Helfrich-Forster C, Emery-Le M, Hall JC, Rosbash M. Drosophila CRY Is a Deep Brain Circadian Photoreceptor. Neuron 2000; 26:493–504.

    Article  PubMed  CAS  Google Scholar 

  26. Helfrich-Forster C, Winter C, Hofbauer A, Hall JC, Stanewsky R. The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 2001; 30:249–261.

    Article  PubMed  CAS  Google Scholar 

  27. Hofbauer A, Buchner E. Does Drosophila have seven eyes? Naturwissenschaften 1989; 76:335–336.

    Article  Google Scholar 

  28. Hamblen-Coyle MJ, Wheeler DA, Rutila JE, Rosbash M, Hall JC. Behavior of period-altered circadian rhythm mutants of Drosophila in light: dark cycles (Diptera: Drosophilidae). Journal of Insect Behavior 1992; 5:417–445.

    Article  Google Scholar 

  29. Naidoo N, Song W, Hunter-Ensor M, Sehgal A. A role for the proteasome in the light response of the timeless clock protein. Science 1999; 285:1737–1741.

    Article  PubMed  CAS  Google Scholar 

  30. Ivachenko M, Stanewsky R, Giebultowicz JM. Circadian photoreception in Drosophila: Functions of cryptochrome in peripheral and central clocks. Journal of Biological Rhythms 2001; 16:205–215.

    Google Scholar 

  31. Krishnan B, Levine JD, Lynch MKS, et al. A new role for cryptochrome in a Drosophila circadian oscillator. Nature 2001; 411:313–317.

    Article  PubMed  CAS  Google Scholar 

  32. Ceriani MF, Darlington TK, Staknis D, et al. Light-Dependent Sequestration of Timeless by Cryptochrome. Science 1999; 285:553–556.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, FJ., Sehgal, A. (2002). Entrainment of the Drosophila circadian clock by light. In: Holick, M.F. (eds) Biologic Effects of Light 2001. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0937-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0937-0_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5313-3

  • Online ISBN: 978-1-4615-0937-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics