Skip to main content

The Epidermal Vitamin D System

  • Chapter
Biologic Effects of Light 2001

Abstract

The cutaneous photosynthesis of vitamin D3 represents the main source of vitamin D in humans. It is formed from 7-dehydrocholesterol (7DHC or provitamin D3), which is present in large amounts in cell membranes of keratinocytes of the basal and spinous epidermal layers (1). By the action of ultraviolet B light (UVB light with a wavelength of 290–315 nm) the B ring of 7DHC can be broken to form previtamin D3. Previtamin D3 has very low or no affinity for vitamin D binding protein, precluding its entrance into the circulation. In the lipid bilayer of membranes, the unstable previtamin D3 is further isomerized to vitamin D3 by thermal energy (1). The conformational change due to this isomerization can project vitamin D3 into the circulation, where it is caught by vitamin D binding protein and transported to the liver and kidney for further metabolization to 1α,25-dihydroxyvitamin D3 [l,25(OH)2D3] (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holick M.F. McCollum award lecture, 1994: vitamin D — new horizons for the 21st century. Am J Clin Nutr 1994; 60:619–630

    PubMed  CAS  Google Scholar 

  2. Kelley R.I. RSH/Smith-Lemli-Opitz syndrome: mutations and metabolic morphogenesis. Am J Hum Genet 1998; 63:322–326

    Article  PubMed  CAS  Google Scholar 

  3. Cunniff C., Kratz L.E., Moser A., Natowicz M.R., Kelley R.I. Clinical and biochemical spectrum of patients with RSH/Smith-Lemli-Opitz syndrome and abnormal cholesterol metabolism. Am J Med Genet 1997; 68:263–269

    Article  PubMed  CAS  Google Scholar 

  4. Chen T.C., Lu Z., Shao Q., Tint G.S., Matsuoka L., Wortsman J., Holick M.F. Vitamin D metabolism in patients with Smith-Lemli-Opitz syndrome (abstract). Photodermatol Photoimmunol Photomed 1995; 11:63

    Google Scholar 

  5. Bonjour J.-P., Trechsel U., Granzer E., Klopffer G., Muller K., Scholler D. The increase in skin 7-dehydrocholesterol induced by an hypocholesterolemic agent is associated with elevated 25-hydroxyvitamin D3 plasma level. Pfliigers Arch 1987; 410:165–168

    Article  CAS  Google Scholar 

  6. Pillai S., Bikle D.D., Elias P.M. Vitamin D and epidermal differentiation: evidence for a role of endogenously produced vitamin D metabolites in keratinocyte differentiation. Skin Pharmacol 1988; 1:149–160

    Article  PubMed  CAS  Google Scholar 

  7. Morris, J.G. Ineffective vitamin D synthesis in cats is reversed by an inhibitor of 7-dehydrocholesterol-delta7-reductase. J Nutr 1999; 129:903–908

    PubMed  CAS  Google Scholar 

  8. Bikle D.D., Pillai S. Vitamin D, calcium and epidermal differentiation. Endocr Rev 1993; 14:3–19

    PubMed  CAS  Google Scholar 

  9. Courtois S.J., Segaert S., Degreef H., Bouillon R., Garmyn M. Ultraviolet B suppresses vitamin D receptor gene expression in keratinocytes. Biochem Biophys Res Commun 1998; 246:64–69

    Article  PubMed  CAS  Google Scholar 

  10. Fu G.K., Lin D., Zhang M.Y.H., Bikle D.D., Shackleton C.H.L., Miller W.L., Portale A.A. Cloning of 25-hydroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol 1997; 11:1961–1970

    Article  PubMed  CAS  Google Scholar 

  11. Lehmann B. HaCaT cell line as a model system for vitamin D3 metabolism in human skin. J Invest Dermatol 1997; 108:78–82

    Article  PubMed  CAS  Google Scholar 

  12. Ichikawa F., Sato K., Nanjo M., Nishii Y., Shinki T., Takahashi N., Suda T. Mouse primary osteoblasts express vitamin D3 25-hydroxylase mRNA and convert 1α-hydroxyvitamin D3 into 1α,25-dihydroxyvitamin D3. Bone 1995; 16:129–135

    PubMed  CAS  Google Scholar 

  13. Lehmann, B., Tiebel, O. and Meurer, M. (1999) Arch Dermatol Res Expression of vitamin D3 25-hydroxylase (CYP27) mRNA after induction by vitamin D3 or UVB radiation in keratinocytes of human skin equivalents — a preliminary study. 1999; 291:507–510

    PubMed  CAS  Google Scholar 

  14. Lehmann B., Pietzsch J., Kampf A., Meurer M. Human keratinocyte line HaCaT metabolizes 1α-hydroxyvitamin D3 to 1α,25-dihydroxyvitamin D3 (calcitriol). J Dermatol Sci 1998; 18:118–127

    Article  PubMed  CAS  Google Scholar 

  15. Lehmann B., Rudolph T., Pietzsch J., Meurer M. Conversion of vitamin D3 to 1α,25-dihydroxyvitamin D3 in human skin equivalents. Exp Dermatol 2000; 9:97–103

    Article  PubMed  CAS  Google Scholar 

  16. Lehmann B., Knuschke P., Meurer M. UVB-induced conversion of 7-dehydrocholesterol to 1α,25-dihydroxyvitamin D3 (calcitriol) in the human keratinocyte line HaCaT. Photochem Photobiol 2000; 72:203–209

    Article  Google Scholar 

  17. Fogh K., Kragballe K. Vitamin D3 analogues. Clin Dermatol 1997; 15:705–713

    Article  PubMed  CAS  Google Scholar 

  18. Segaert S., Garmyn M., Degreef H., Bouillon R. Retinoic acid modulates the antiproliferative effect of 1,25-dihydroxyvitamin D3 in cultured human epidermal keratinocytes. J Invest Dermatol 1997; 109:46–54

    Article  PubMed  CAS  Google Scholar 

  19. Park K., Bae H., Heydemann A., Roberts A.B., Dotto P., Sporn M.B., Kim S.-J. The E1A oncogene induces resistance to the effects of 1,25-dihydroxyvitamin D3 on inhibition of growth of mouse keratinocytes. Cancer Res 1994; 54:6087–6089

    PubMed  CAS  Google Scholar 

  20. Liu M., Lee M.-H., Cohen M., Bommakanti M., Freedman L.P. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev 1996; 10:142–153

    Article  PubMed  CAS  Google Scholar 

  21. Matsumoto K., Hashimoto K., Nishida Y., Hashiro M., Yoshikawa K. Growth-inhibitory effects of 1,25-dihydroxyvitamin D3 on normal human keratinocytes cultured in serum-free medium. Biochem Biophys Res Commun 1990; 166:916–923

    Article  PubMed  CAS  Google Scholar 

  22. Sebag M., Gulliver W., Kremer W. Effects of 1,25-dihydroxyvitamin D3 and calcium on growth and differentiation and on c-fos and p53 gene expression in normal human keratinocytes. J Invest Dermatol 1994; 103, 323–329.

    Article  PubMed  CAS  Google Scholar 

  23. Xie Z., Bikle D.D. Cloning of the human phosphohpase C-γ1 promoter and identification of a DR6-type vitamin D-responsive element. J Biol Chem 1997; 272:6573–6577

    Article  PubMed  CAS  Google Scholar 

  24. Kim H.-J., Abdelkader N., Katz M., Mc Lane J.A. 1,25-dihydroxyvitamin D3 enhances antiproliferative effect and transcription of TGF-β1 on human keratinocytes in culture. J Cell Physiol 1992; 151:579–587

    Article  PubMed  CAS  Google Scholar 

  25. Geilen C.C, Bektas M., Wieder T., Kodelja V., Goerdt S., Orfanos C.E. 1,25-dihydroxyvitamin D3 induces sphingomyelin hydrolysis in HaCaT cells via tumor necrosis factor α.J Biol Chem 1997; 272:8997–9001

    Article  PubMed  CAS  Google Scholar 

  26. Kremer R., Karaplis A.C., Henderson J., Gulliver W., Banville D., Hendy G.N., Goltzman D. Regulation of parathyroid hormone-like peptide in cultured normal human keratinocytes. J Clin Invest 1991; 87:884–893

    Article  PubMed  CAS  Google Scholar 

  27. Hughes S.V., Robinson E., Bland R., Lewis H.M., Stewart P.M., Hewison M. 1,25-dihydroxyvitamin D3 regulates estrogen metabolism in cultured keratinocytes. Endocrinology 1997; 138:3711–3718

    Article  PubMed  CAS  Google Scholar 

  28. Gniadecki, R., Gajkawska, B. and Hansen, M. 1,25-dihydroxyvitamin D3 stimulates the assembly of adherens junctions in keratinocytes: involvement of protein kinase C. Endocrinology 1997; 138:2241–2248

    Article  PubMed  CAS  Google Scholar 

  29. Ohba M., Ishino K., Kashiwagi M., Kawabe S., Chida K., Huh N.-H., Kuroki T. Induction of differentiation in normal human keratinocytes by adenovirus-mediated introduction of the η and δ isoforms of protein kinase C. Mol Cell Biol 1998; 18:5199–5207

    PubMed  CAS  Google Scholar 

  30. Chang P.-L., Prince C.W. 1α,25-dihydroxyvitamin D3 enhances 12-O-tetradecanoylphorbol-13-acetate-induced tumorigenic transformation and osteopontin expression in mouse JB6 epidermal cells. Cancer Res 1993; 53:2217–2220

    PubMed  CAS  Google Scholar 

  31. Gniadecki, R. Stimulation versus inhibition of keratinocyte growth by 1,25-dihydroxyvitamin D3: dependence on cell culture conditions. J Invest Dermatol 1996; 106:510–516

    Article  PubMed  CAS  Google Scholar 

  32. Garach-Jehoshua O., Ravid A., Liberman U.A., Koren R. 1,25-dihydroxyvitamin D3 increases the growth-promoting activity of autocrine epidermal growth-promoting activity of autocrine epidermal growth factor receptor ligands in keratinocytes. Endocrinology 1999; 140:713–721

    Article  PubMed  CAS  Google Scholar 

  33. Gniadecki R. Activation of Raf-mitogen-activated protein kinase signaling pathway by 1,25-dihydroxyvitamin D3 in normal human keratinocytes. J Invest Dermatol 1996; 106:1212–1217

    Article  PubMed  CAS  Google Scholar 

  34. Gniadecki R., Serup J. Stimulation of epidermal proliferation in mice with 1α,25-dihydroxyvitamin D3 and receptor-active analogues of 1α,25-dihydroxyvitamin D3. Biochem Pharmacol 1995; 49:621–624

    Article  PubMed  CAS  Google Scholar 

  35. Sato H., Sugimoto I., Matsunaga T., Tsuchimoto M., Ohta T., Uno H., Kiyoki M. Tacalcitol (l,24(OH)2D3, TV-02) inhibits phorbol ester-induced epidermal proliferation and cutaneous inflammation and induces epidermal differentiation in mice. Arch Dermatol Res 1996; 288:656–663

    Article  PubMed  CAS  Google Scholar 

  36. Lu B., Rothnagel J.A., Longley M.A., Tsai S.Y., Roop D.R. Differentiation-specific expression of human keratin 1 is mediated by a composite AP-1/steroid hormone element. J Biol Chem 1994; 269:7443–7449

    PubMed  CAS  Google Scholar 

  37. Segaert S., Garmyn M., Degreef H., Bouillon R. Anchorage-dependent expression of the vitamin D receptor in normal human keratinocytes. J Invest Dermatol 1998; 111:551–558

    Article  PubMed  CAS  Google Scholar 

  38. Segaert S., Garmyn M., Degreef H., Bouillon R. Suppression of vitamin D receptor and upregulation of retinoid X receptor a expression during squamous differentiation of cultured keratinocytes. J Invest Dermatol 2000; 114:494–501

    Article  PubMed  CAS  Google Scholar 

  39. Segaert S., Degreef H., Bouillon R. Vitamin D receptor expression is linked to cell cycle control in normal human keratinocytes. Biochem Biophys Res Commun 2000; 279:89–94

    Article  PubMed  CAS  Google Scholar 

  40. Fukuoka M., Ogino Y., Sato H., Ohta T., Komoriya K., Nishioka K., Katayama I. RANTES expression in psoriatic skin, and regulation of RANTES and IL-8 production in cultured keratinocytes by active vitamin D3 (tacalcitol). Br J Dermatol 1998; 138:63–70

    Article  PubMed  CAS  Google Scholar 

  41. Michel G., Gaillis A., Jarzebska-Deussen B., Müschen A., Mirmohammadsadegh A., Ruzicka T. l,25-(OH)2-vitamin D3 and calcipotriol induce IL-10 receptor gene expression in human epidermal cells. Inflamm Res 1997; 46:32–34

    Article  PubMed  CAS  Google Scholar 

  42. Kang S., Yi S., Griffiths C.E.M., Fancher L., Hamilton T.A., Choi J.H. Calcipotriene-induced improvement in psoriasis is associated with reduced interleukin-8 and increased interleukin-10 levels within lesions. Br J Dermatol 1998; 138:77–83

    Article  PubMed  CAS  Google Scholar 

  43. Yoshizawa T, Handa Y., Uematsu Y., Takeda S., Sekine K., Yoshihara Y., Kawakami T., Arioka K., Sato H., Uchiyama Y., Masushige S., Fukamizu A., Matsumoto T., Kato S. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 1997; 16:391–396

    Article  PubMed  CAS  Google Scholar 

  44. Li, Y.C., Pirro, A.E., Amling, M., Delling, G., Baron. R., Bronson, R. and Demay, M.B. Targeted ablation of the vitamin D receptor: An animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA 1997; 94:9831–9835

    Article  PubMed  CAS  Google Scholar 

  45. Malloy P.J., Pike J.W., Feldman D. The vitamin D receptor and the syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocr Rev 1999; 20:156–188

    Article  PubMed  CAS  Google Scholar 

  46. Li Y.C., Amling M., Pirro A.E., Priemel M., Meuse M., Baron R., Delling G., Demay M.B. Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 1998; 139:4391–4396

    Article  PubMed  CAS  Google Scholar 

  47. Sakai Y., Demay M. Evaluation of keratinocyte proliferation and differentiation in vitamin D receptor knockout mice. Endocrinology 2000; 141:2043–2049

    Article  PubMed  CAS  Google Scholar 

  48. Sakai Y., Kishimoto J., Demay M. Metabolic and cellular analysis of alopecia in vitamin D receptor knockout mice. J Clin Invest 2001; 107:961–966

    Article  PubMed  CAS  Google Scholar 

  49. Li M., Indra A.K., Warot X., Brocard J., Messaddeq N., Kato S., Metzger D., Chambon P. Skin abnormalities generated by temporally controlled RXRα mutations in mouse epidermis. Nature 2000; 407:633–636

    Article  PubMed  CAS  Google Scholar 

  50. Li M., Chiba H., Warot X., Messaddeq N., Gérard C., Chambon P., Metzger D. RXRα ablation in skin keratinocytes results in alopecia and epidermal alterations. Development 2001; 128:675–688

    PubMed  CAS  Google Scholar 

  51. Li Y.C., Bergwitz C., Jüppner H., Demay M.B. Cloning and characterization of the vitamin D receptor from Xenopus Laevis. Endocrinology 1997; 138:2347–2353

    Article  PubMed  CAS  Google Scholar 

  52. Johnson J.A., Grande J.P., Roche P.C., Kumar R. Ontogeny of the 1,25-dihydroxyvitamin D3 receptor in fetal rat bone. J Bone Miner Res 1996; 11:56–61.

    Article  PubMed  CAS  Google Scholar 

  53. Horiuchi N., Clemens T.L., Schiller A.L., Holick M.F. Detection and developmental changes of the l,25-(OH)2-D3 receptor concentration in mouse skin and in intestine. J Invest Dermatol 1985; 84:461–464

    Article  PubMed  CAS  Google Scholar 

  54. Hanada K., Sawamura D., Nakano H., Hashimoto I. Possible role of 1,25-dihydroxyvitamin D3-induced metallothionein in photoprotection against UVB injury in mouse skin and cultured keratinocytes. J Dermatol Sci 1995; 9:203–208

    Article  PubMed  CAS  Google Scholar 

  55. Lee J.-H., Youn J.I. The photoprotective effect of 1,25-dihydroxyvitamin D3 on ultraviolet light B-induced damage in keratinocytes and mechanism of action. J Dermatol Sci 1998; 18:11–18

    Article  PubMed  CAS  Google Scholar 

  56. Masson R.S., Holliday C.J. “1,25-dihydroxyvitamin D contributes to photoprotection in skin cells.” In Vitamin D endocrine system Structural, biological, genetic and clinical aspects. Norman A.W., Bouillon R., Thomasset M., eds. Riverside, CA: University of Riverside Printing and Reprographics, 2000 pp. 605–608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Segaert, S., De Haes, P., Bouillon, R. (2002). The Epidermal Vitamin D System. In: Holick, M.F. (eds) Biologic Effects of Light 2001. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0937-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0937-0_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5313-3

  • Online ISBN: 978-1-4615-0937-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics