Advertisement

Effects of Topically Applied Glycolic Acid (GA) on the Sensitivity of Human Skin to UV-Induced Damage.

  • K. Kaidbey
  • B. M. Sutherland
  • P. V. Bennett
  • D. A. Dennis
  • W. G. Warner
  • C. Barton
  • A. Kornhauser

Abstract

Glycolic acid (GA), an alpha-hydroxy acid, (AHA) has been widely used in a large number of cosmetics products for daily use over long periods of time (Andersen, 1998). Sustained by the quest for a youthful appearance, the use of AHA's in skin care products has increased dramatically in the last decade. These products claim to reduce wrinkles, spots and other signs of aging (Van Scott, 1989). There is little information available to date about their long-term effects. One of the important question relates to the acute and chronic effects of AHA's on the sensitivity of human skin to sun exposure. This study was conducted to investigate the effects of GA, applied in a cosmetic formulation, in modifying UV-sensitivity, and to determine whether the effect was reversible after discontinuing GA applications.

Keywords

Human Skin Glycolic Acid Cosmetic Product Minimal Erythema Dose Skin Care Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, F. A., (1998). Final report on the safety assessment of glycolic acid, ammonium, calcium, potassium, and sodium glycolates, methyl, ethyl, propyl and butyl glycolates, and lactic acid, ammonium, calcium, potassium, sodium and TEA-lactates, methyl, ethyl, isopropyl, and butyl lactates, and lauryl, myristyl, and cetyl lactates. Int. J. Toxicol. 17(Suppl), 27.Google Scholar
  2. Bennett, P. V., Gange, R. W., Hacham, H., Hejmadi, V. S., Moran, M., Ray, S. and Sutherland, B. M. (1996). Isolation of high-molecular-length DNA from human skin. Biotechniques, 21:458–463.PubMedGoogle Scholar
  3. Brash, DE and Bale, AE.(2001) Molecular biology of skin cancer. In: DeVita, VT, Hellman, S, and Rosenberg, SA (Eds.) Cancer: Principles and Practice of Oncology, 6th ed., Philadelphia: Lippincott-Raven, pp. 1971–1975.Google Scholar
  4. Danno, K., Horio, T., (1987). Sunburn cell: Factor involved in its formaton. Photochem. and Photobio. 45,: 683–690.CrossRefGoogle Scholar
  5. Daniels, F. Jr., Brophy, D., and Lobitz, W. C. Jr. (1961). Histochemical responses of human skin following ultraviolet irradiation. J.Invest. Dermatol. 37, 351–357.PubMedGoogle Scholar
  6. Elson, M. L., (1992). The utilization of glycolic acid in photoaging. Cosmet. Dematol. 5,36. 12–15.Google Scholar
  7. Grove, G. L. and Kaidbey, K. H., (1980). Sunscreens prevent sunburn cell formation in human skin. J. Invest. Dermatol. 75: 363–364.PubMedCrossRefGoogle Scholar
  8. Hong, J. T., Kim, E. J., Ahn, K. S, Jung, M. J., Yun, Y. P., Park, Y.K. and Lee, S. H., (2001). Inhibitory effect of glycolic acid on skin tumorigenesis in SKH-1 hairless mice and its mechanism of action. Molecular Carcinogenesis,31: 152–160.PubMedCrossRefGoogle Scholar
  9. Kaidbey, H. K., (1990). The photoprotective potential of the new superpotent sunscreens. J AM Acad Dermatol, 22: 449–452.PubMedCrossRefGoogle Scholar
  10. Morreale, M. and Livrea MA., (1997). Synergistic effect of glyconic acid on the antioxidant activity of alpha-hydroxy acids on photoaged skin: A pilot clinical, histologic, and ultrastructural study. Mol. Biol. Int., 42: 1093–1102.Google Scholar
  11. Nonaka, N., Kaidbey, K. H. and Kligman, A. M., (1983). The influence of UVA and visible radiation on acute damage by short-wave UVR (λ < 320). J. Invest. Dermatol. 81:524–527.PubMedCrossRefGoogle Scholar
  12. Perncone, NV. and Dinardo, JC., (1996). Photoprotective and anti-inflammatory effects of topical glycolic acid. Dermatol Surg. 22: 435–437.CrossRefGoogle Scholar
  13. Roza, L., De Gruijl, F. R., Bergen Henegouwen, J. B. A., Guikers, K., Van Weelden, H., Van DerSchans, G P., and Baan, R. A., (1991). Detection of photorepair of UV-induced Thymine dimers in human epidermis by immunofluorescnce microscopy. J Invest dermatol 96:903–907.PubMedCrossRefGoogle Scholar
  14. Sams, R. L., Couch, L. H., Miller, B. J., Okerberg, C. V., Warbritton, A., Warner, W. G., Beer, J. Z., and Howard, P. C. (2001). Basal cell proliferation in female SKH-1 mice treated with α- and β-hydroxy acids. Toxicology and Applied Pharmacology 175, 76–82.PubMedCrossRefGoogle Scholar
  15. Sutherland, B. M., Harbor, L.C. and Kochevar, I. E., (1980). Pyrimidine dimer formation and repair in human skin. Cancer Res. 40: 3183–3185.Google Scholar
  16. Van Scott, E. J., and Yu, R. J. (1974). Control of keratin ization with alphahydroxy acids and related compounds. Topical treatment of ichthyotic disorders. Arch. Dermatol. 100, 586–590.Google Scholar
  17. Van Scott, E. J., and Yu, R. J. (1989). Alpha hydroxy acids: Procedures for use in clinical practice. Cutis 43, 222–228.PubMedGoogle Scholar
  18. Young, A. R. (1987). The sunburn cell. Photodermantology $: 127–134Google Scholar
  19. Young, A.R., (1999) in Photodermatology, The Molecular and Genetic Effects of Ultraviolet Radiation Exposure on Skin Cells; Ed.: J.L.M. Hawk; Arnold, pp. 25–42Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • K. Kaidbey
    • 1
  • B. M. Sutherland
    • 2
  • P. V. Bennett
    • 2
  • D. A. Dennis
    • 3
  • W. G. Warner
    • 3
  • C. Barton
    • 3
  • A. Kornhauser
    • 3
  1. 1.Ivy LaboratoriesPhiladelphia
  2. 2.Brookhaven National LabUpton
  3. 3.Food and Drug AdministrationWashington

Personalised recommendations