Skip to main content

Embedding Theory: Introduction and Applications to Time Series Analysis

  • Chapter
Modelling and Forecasting Financial Data

Part of the book series: Studies in Computational Finance ((SICF,volume 2))

Abstract

The fact that even though when we will not know the equations defining an underlying dynamical system and we are not able to measure all state space variables, we may be able to find a one-to one correspondence between the original state space and a reconstructed space using few variables means that it is possible to identify unambiguously the original state space from measurements. This has open a new field of research: non-linear time series analysis. The objective of this Chapter is to provide the reader with an overall picture of the embedding theory and time-delay state space reconstruction techniques. We hope that this introductory chapter will guide the reader in understanding the subsequent chapters where different relevant aspects of dynamical systems theory are going to be discussed in more depth and detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abarbanel, H.D.I., Analysis of Observed Chaotic Data, 1996, Springer-Verlag, New-York.

    Book  Google Scholar 

  • Abarbanel, H. D. I., R. Brown, J. J. Sidorowich and L. Sh. Tsimring, 1993, The analysis of observed chaotic data in physical systems, Rev. Mod. Phys. 65, 1331–1392.

    Article  Google Scholar 

  • Abarbanel, H. D. I. and Kennel, M. B., 1993, Local false neighbours and dynamical dimension from observed chaotic data. Phys. Rev. E 47, 3057–3068.

    Article  Google Scholar 

  • Badii, R., Broggi, G., Derighetti, B., Ravani, M., Ciliberto, S., Politi, A. and Rubio, M. A., 1988, Dimension increase in filtered signals. Phys. Rev. Lett. 60, 979–982.

    Article  Google Scholar 

  • Breeden, J. L. and N. H. Packard, 1994, A learning algorithm for optimal representation of experimental data, Int. J. of Bifurcations and Chaos 4, 311–326.

    Article  Google Scholar 

  • Burden, R. L. and Faires, J. D., Numerical Analysis, 3rd Ed., PWS, Boston.

    Google Scholar 

  • Broomhead, D. S. and G. P. King, 1986, Extracting qualitative dynamics from experimental data, Physica D 20, 217–236.

    Article  Google Scholar 

  • Cannon, M. J., Percival, D. B., Caccia, D. C, Raymond, G. M. and Bassingthwaighte, J. B., 1997, Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series. Physica A 241, 606–626.

    Article  Google Scholar 

  • Casdagli, M., 1989, Nonlinear prediction of chaotic time series. Physica D 35, 335–356.

    Article  Google Scholar 

  • Casdagli, M., Eubank, S., Farmer, J. D., Gibson, J., 1991, State space reconstruction in the presence of noise. Physica D 51, 52–98.

    Article  Google Scholar 

  • Davies, M., 1994, Noise reduction schemes for chaotic time series, Physica D 79, 174–192.

    Google Scholar 

  • Diks, C., 1999, Nonlinear Time Series Analysis: Methods and applications. World Scientific, Singapore.

    Book  Google Scholar 

  • Eckmann, J. P., 1981, Roads to turbulence in dissipative dynamical systems, Rev. Mod. Phys. 53, 643–654.

    Article  Google Scholar 

  • Eckmann, J. P., Kamphorst, S. O. and Ruelle, D., 1987, Recurrence plots of dynamical systems, Europhys. Lett. 4, 973–977.

    Google Scholar 

  • Eckmann, J. P. and Ruelle, D., 1985, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656.

    Article  Google Scholar 

  • Farmer, J.D., Ott, E., Yorke, J.A., 1983, The dimension of chaotic attractors, Physica D 7, 153–180

    Article  Google Scholar 

  • Farmer, J. D. and Sidorowich, J. J., 1987, Predicting chaotic time series. Phys. Rev. Lett. 59, 845–848.

    Article  Google Scholar 

  • Fraser, A. and Swinney, H., 1986, Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140.

    Article  Google Scholar 

  • Gilmore, R., 1998, Topological analysis of chaotic dynamical systems. Rev. Mod. Phys. 70, 1455–1529,

    Article  Google Scholar 

  • Grassberger, P., 1983, Generalized dimension of strange attractors. Phys. Lett A 97, 227–230.

    Article  Google Scholar 

  • Grassberger, P. and Procaccia, I., 1983, Characterization of strange attractors, Phys. Rev. Lett. 50, 346–349

    Article  Google Scholar 

  • Haken, H., 1983, Synergetics: An Introduction, Springer-Verlag, Berlin.

    Google Scholar 

  • Hentschel, H.G.E. and Procaccia, I., 1983, The infinite number of generalized dimensions of fractals and strange attractors, Physica D 8, 435–444.

    Article  Google Scholar 

  • Hurst, H. E., 1951, Long-term storage capacity of reservoirs, Trans. Am. Soc. Civ. Eng. 116, 770–779.

    Google Scholar 

  • Jensen, H. J., 1998, Self-Organized criticality, Cambridge University Press.

    Book  Google Scholar 

  • Kantz H., Shreiber T., Nonlinear Time Series Analysis, 1997, Cambridge University Press

    Google Scholar 

  • Kaplan, J. L. and Yorke, J. A., 1979, Chaotic behaviour in multidimensional difference equations. In Peitgen H. O. and Walther, H. O. (eds.) Functional Differential Equations and Approximation of Fixed Points, Springer, Berlin, 204–227.

    Chapter  Google Scholar 

  • Kennel, M. B., R. Brown and H. D. I. Abarbanel, 1992, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411.

    Article  Google Scholar 

  • Kolmogorov, A.N., 1958, A new invariant for transitive dynamical systems, Dokl. Akad. Nauk SSSR 119, 861–864.

    Google Scholar 

  • Kondratieff, N. D., 1935, The long wave in economic life, Review of Economic Statistics 17, 105–115.

    Article  Google Scholar 

  • Kostelich, E. J. and Schreiber, T., 1993, Noise reduction in chaotic time-series data: A survey of common methods. Phys. Rev. E 48, 1752–1763.

    Article  Google Scholar 

  • Kuznets, S., 1973, Moders economic growth: Findings and reflections, American Economic Review 63, 247–258.

    Google Scholar 

  • Mandelbrot, B. B., 1983, The Fractal Geometry of Nature, W. H. Freeman. New York.

    Google Scholar 

  • Mitchel, W. C., 1927, Bussines Cycles: The Problem and its Setting. National Bureau of Economic Research, New York.

    Google Scholar 

  • Nicolis, G. and Prigogine, I., 1977, Self-organization in Complex Systems, Wiley, New York.

    Google Scholar 

  • Parker, Y.S. and Chua, L.O., 1989, Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, New York.

    Book  Google Scholar 

  • Packard, N., Crutchfield, J., Farmer, D. and Shaw, R., 1980, Geometry from a time series. Phys. Rev. Lett. 45, 712–715.

    Article  Google Scholar 

  • Pesin, Y.B., 1977, Lyapunov characteristic exponents and smooth ergodic theory, Russian Math Survey 32, 55–104.

    Article  Google Scholar 

  • Peters, E. E., 1996, Chaos and Order in the Capital Markets: a New View of Cycles, Prices and Volatility, 2nd Edition, Wiley, New York.

    Google Scholar 

  • Provenzale, A., Smith, L. A., Vio, R. and Murante, G., 1992, Distinguishing between low-dimensional dynamics and randomness in measured time series. Physica D 58, 31–49.

    Article  Google Scholar 

  • Rasmussen, S., Mosekilde, E. and Sterman, J. D., 1985, Bifurcations and chaotic behaviour in a simple model of the economic wave, Systems Dynamics Review 1, 92–110.

    Article  Google Scholar 

  • Ruelle, D. and Takens F., 1971, On the nature of turbulence. Comm. Math. Phys. 20, 167–192.

    Article  Google Scholar 

  • Ruelle, D., 1990, Deterministic chaos: the science and the fiction. Proc. R. Soc. Lond. A 427, 241–248.

    Article  Google Scholar 

  • Sauer, T., Yorke, Y and Casdagli, M., 1991, Embedology, J. Stat. Phys. 65, 579–616.

    Article  Google Scholar 

  • Schreiber, T., 1998, Interdisciplinary application of nonlinear time series methods. Physics Reports.

    Google Scholar 

  • Schuster H.G., Deterministic Chaos: an introduction, 1995, VCH

    Google Scholar 

  • Stark, J., Broomhead, D.S., Davies, M.E. and Huke, J. 1997, Takens embedding theorems for forced and stochastic systems. Nonlinear Analysis 30, 5303–5314.

    Article  Google Scholar 

  • Sterman, J. D., 1985, A behavioral model of the economic long wave. J. of Economic Behavior and Organization 6, 17–53.

    Article  Google Scholar 

  • Sterman, J. D., 1986, The economic long wave: theory and evidence. Systems Dynamics Review 2, 87–125.

    Article  Google Scholar 

  • Takens, F., 1981, in Dynamical Systems and Turbulence, Warwick 1980, vol. 898 of Lecture Notes in Mathematics, edited by A. Rand and L.S Young, Springer, Berlin, pp. 366–381.

    Chapter  Google Scholar 

  • Takens, F., 1996, The effect of small noise on systems with chaotic dynamics. In Stochastic and Spatial Structures of Dynamical Systems, S. J. van Strien and S. M. Verduyn Lunel, Verhandelingen KNAW, Afd. Natuurkunde, vol. 45, pp. 3–15. North_Holland, Amsterdam.

    Google Scholar 

  • Theiler, J., Galdrikian, B., Longtin, A, Eubank, S. and Farmer, J. D., 1992, Using surrogate data to detect nonlinearity in time series, in Nonlinear Modeling and Forecasting, Casdagli, M. and Eubank, S. (eds.), Addison-Wesley, Redwood City, California, pp. 163–188.

    Google Scholar 

  • Tong, H., 1990, Nonlinear Time Series: a Dynamical System Approach. Oxford University Press. Oxford.

    Google Scholar 

  • Trulla, L.L, A. Giuliani, J.P. Zbilut, and C.L. Webber, Jr. (1996). Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A 223, 255–26.

    Article  Google Scholar 

  • Waldrop, M., 1993, Complexity: The Emerging Science at the Edge of Chaos, Touchstone Books.

    Google Scholar 

  • Webber Jr. C. L. and Zbilut, J. P., 1994, Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76, 965–973.

    Google Scholar 

  • Whitney, H., 1936, Differentiate manifolds. Ann. Math. 37, 645–680.

    Article  Google Scholar 

  • Wolf A., J. B. Swift, H. R. Swinne, J. A. Vastan, 1985, Determining Lyapunov exponents from a time series, Physica 16D, 285–317.

    Google Scholar 

  • Zbilut, J. P. and Webber Jr. C. L., 1992, Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171, 199–203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strozzi, F., Zaldivar, J.M. (2002). Embedding Theory: Introduction and Applications to Time Series Analysis. In: Soofi, A.S., Cao, L. (eds) Modelling and Forecasting Financial Data. Studies in Computational Finance, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0931-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0931-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5310-2

  • Online ISBN: 978-1-4615-0931-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics