Laser Tomography

  • Dmitry A. Zimnyakov
  • Valery V. Tuchin


Comparative analysis of the modern optical technologies based on the use of laser light for tissue structure diagnostics and imaging is given in this chapter. A great interest to the development and medical applications of optical imaging methods that has appeared in the last two decades, was stimulated by such undoubted advantages of these techniques as safety, potentiality to obtain high spatial resolution on the cellular and even subcellular level in combination with relatively large penetration depths of the probe laser light in the visible and near-infrared regions, possibility to provide the multifunctional diagnostics and imaging of tissues and organs, etc. It is necessary to note that various aspects of laser diagnostics and imaging in biology and medicine were discussed in a series of special issues and books of selected papers [1, 2, 3, 4, 5, 6]. Here we will discuss the basic physical principles, potentialities, limitations and instrumentation design for such laser tomography methods as various diffusing light technologies, laser confocal microscopy, optical coherence tomography and speckle imaging techniques. Also, the most important examples of clinical and laboratory applications of laser imaging for structure and functional diagnostics of tissues and organs will be presented.


Optical Coherence Tomography Objective Lens Probe Light Laser Tomography Turbid Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Müller, B. Chance, R. Alfano et al. (eds.), Medical Optical Tomography: Functional Imaging and Monitoring, SPIE Press, Bellingham, WA, IS11, 1993.Google Scholar
  2. 2.
    O. Minet, G. Mueller, and J. Beuthan (eds.), Selected Papers on Optical Tomography, Fundamentals and Applications in Medicine, SPIE Press, Bellingham, WA, MS 147, 1998.Google Scholar
  3. 3.
    V.V. Tuchin (ed), Selected Papers on Tissue Optics: Applications in Medical Diagnostics and Therapy, SPIE Press, Bellingham, WA, MS 102, 1994.Google Scholar
  4. 4.
    H. Podbielska, C.K. Hitzenberger, V.V. Tuchin (eds), Special section on interferometry in biomedicine, J. Biomed. Optics, 3, pp.5–79, pp. 225–266, 1998.Google Scholar
  5. 5.
    V.V. Tuchin, H. Podbielska, C.K. Hitzenberger, (eds), Special section on coherence domain optical methods in biomedical science and clinics, J. Biomed. Optics, 4, pp. 94–190,1999.Google Scholar
  6. 6.
    V.V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis, SPIE Tutorial Texts in Optical Engineering, TT38, SPIE Press, Bellingham, WA, 2000.Google Scholar
  7. 7.
    K.M. Yoo, Feng Liu, and R.R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?”, Phys. Rev. Lett., 64, pp. 2647–2650, 1990.CrossRefGoogle Scholar
  8. 8.
    A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978.Google Scholar
  9. 9.
    D.S. Smith, W.J. Levy, S. Carter, M. Haida, B. Chance, in Proc. Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. Alfano, eds., SPIE, Bellingham, WA, p.511, 1993.CrossRefGoogle Scholar
  10. 10.
    A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light”, Physics Today, 48, pp. 34–40, 1995.CrossRefGoogle Scholar
  11. 11.
    G. Jarry, S. Ghesquierre, J.M. Maarek, S. Debray, Bui-Mong-Hung, and D.Laurent, “Imaging mammalian tissues and organs using laser collimated transülumination”, J. Biomed. Eng., 6, pp. 70–74, 1984.CrossRefGoogle Scholar
  12. 12.
    P.C. Jackson, P.H. Stevens, J.H. Smith, D. Kear, H. Key, and P.N.T. Wells, “The development of a system for transillumination computed tomography”, Br. J. Radiol., 60, pp. 375–380, 1987.CrossRefGoogle Scholar
  13. 13.
    M. Tamura, Y. Nomura, and O. Hazeki, “Laser tissue spectroscopy - near infrared CT”, Rev. Laser Eng. (Japan), 15, pp. 74–82, 1987.CrossRefGoogle Scholar
  14. 14.
    I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, K. Nakagawa, and M. Tamura, “Non-invasive haemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry”, Proc. SPIE, 1431, pp. 284-293,1991.CrossRefGoogle Scholar
  15. 15.
    S.R. Arridge, P. Van der Zee, M. Cope, and D.T. Delpy, “New results for the development of infra-red absorption imaging”, Proc. SPIE, 1245, pp. 91–103,1990.Google Scholar
  16. 16.
    S.R. Arridge, P. Van der Zee, M. Cope, and D.T. Delpy, “Reconstruction methods for infrared absorption imaging”, Proc. SPIE, 1431, pp. 204–215, 1990.CrossRefGoogle Scholar
  17. 17.
    J. Fishkin, E. Gratton, M.J. van de Ven, and W.W. Mantulin, “Diffusion of intensity modulated near infrared light in turbid media”, Proc. SPIE, 1431, pp. 122–135, 1991.CrossRefGoogle Scholar
  18. 18.
    K.W. Berndt and J.R. Lakowich, “Detection and localization of absorbers in scattering media using frequency domain principles”, Proc. SPIE, 1431, pp. 149–158, 1991.CrossRefGoogle Scholar
  19. 19.
    D.A. Boas, M.A. O’Leary, B. Chance, and A.G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications”, Proc. Natl. Acad. Sei. USA, 91, pp. 4887–4891, 1994.CrossRefGoogle Scholar
  20. 20.
    M.A. O’Leary, D.A. Boas, B. Chance, and A.G. Yodh, “Refraction of diffuse photon density waves”, Phys. Rev. Lett., 69, pp. 2658–661, 1992.CrossRefGoogle Scholar
  21. 21.
    J.M. Schmitt, A. Knuttel, and J.R. Knutson, “Interference of diffusive light waves”, J. Opt. Soc.Am. A, 9, pp.l832–1843, 1992.CrossRefGoogle Scholar
  22. 22.
    B.J. Tromberg, L.O. Svaasand, T.T. Tsay, and R.C. Hackell, “Properties of photon density waves in multiply scattering media”, Appl. Opt., 32, pp. 607–616, 1993.CrossRefGoogle Scholar
  23. 23.
    W.W. Mantulin, S. Fantini, M. A. Franceschrni-Fantini, S. A. Walker, J.S. Maier, and E. Gratton, “Tissue optical parameter map generated with frequency-domain spectroscopy,” Proc. SPIE, 2396, pp.323–330,1995.CrossRefGoogle Scholar
  24. 24.
    R.M. Danen, Y. Wang, X.D. Li, et al.,”Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol., 67, pp. 33–40, 1998.CrossRefGoogle Scholar
  25. 25.
    X.D. Li, T. Durduran, A.G. Yodh, et al., “Diffraction tomography for biochemical imaging with diffuse photon-density waves,” Opt. Lett., 22, pp. 573–575, 1997.CrossRefGoogle Scholar
  26. 26.
    Y. Aizu and T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood flow,” Opt. Laser Technol., 23, pp. 205–219, 1991.CrossRefGoogle Scholar
  27. 27.
    S. Fantini, M.A. Franceschini, J.B. Fishkin, et al., “Quantitative deterrnination of the absorption and spectra of chromophores in strongly scattering media: a hght-emitting-diode based technique,” Appl. Opt., 32, pp. 5204–5212, 1994; M.A. Franceschini, K.T. Moesta, and S. Fantini, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sei. USA, 94, pp. 6468–6473, 1997.CrossRefGoogle Scholar
  28. 28.
    J.B. Fishkin, O. Coquoz, E.R. Anderson, et al., “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl Opt., 36, pp. 10–20, 1997.CrossRefGoogle Scholar
  29. 29.
    B. Tromberg, O. Coquoz, J.B. Fishkin, et al., “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B., 352, pp. 661–668, 1997.CrossRefGoogle Scholar
  30. 30.
    A. Knüttel, J.M. Schmitt, and J.R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt., 32, pp. 381–389, 1993.CrossRefGoogle Scholar
  31. 31.
    B. Chance, M. Cope, E. Gratton, N. Ramanujam and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,”.Rev. Sei. Instrum., 69, pp. 3457–3481, 1998.CrossRefGoogle Scholar
  32. 32.
    B. Chance, K. Kang, L. He, H. Liu, and S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sei, Instrum., 67, pp. 4324–4332, 1996.CrossRefGoogle Scholar
  33. 33.
    M. G. Erickson, J. S. Reynolds, and K. J. Webb, “Comparison of sensitivity for single-source and dual-interfering-source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A, 14, pp.3083–3092, 1997.CrossRefGoogle Scholar
  34. 34.
    B. Chance, E. Anday, S. Nioka, et al., “A novel method for fast imaging of brain function, non-invasively, with light,” Optics Express, 2, pp. 411–423, 1998.CrossRefGoogle Scholar
  35. 35.
    J.G. Fujimoto and M.S. Patterson (Eds.), Advances in Optical Imaging and Photon Migration, OSA TOPS, 21, 1998.Google Scholar
  36. 36.
    B. Chance, E. Anday, E. Conant, S. Nioka, S. Zhou, and R Long, “Rapid and sensitive optical imaging of tissue functional activity, and breast,” OSA TOPS, 21, pp. 218–225,1998.Google Scholar
  37. 37.
    D.J. Papaioannou, G.W. Hooft, S.B. Colak, and J.T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J.Biomed. Opt., 1, pp. 305–310, 1996.CrossRefGoogle Scholar
  38. 38.
    E.B. de Haller, “Time-resolved transiUumination and optical tomography,” J.Biomed. Opt., 1, pp. 7–17, 1996.CrossRefGoogle Scholar
  39. 39.
    G. Maret and P.E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers”, Z Phys. B, 65, pp. 409–413, 1987.CrossRefGoogle Scholar
  40. 40.
    D.A. Boas and A.G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlations”, J. Opt Soc. Am. A, 14, pp. 192–215, 1997.CrossRefGoogle Scholar
  41. 41.
    A.G. Yodh, N. Georgiades, and D.J. Pine, “Diffusing-wave interferometry”, Opt. Communications, 83, pp. 56–59, 1991.CrossRefGoogle Scholar
  42. 42.
    M. Born and E. Wolf, Principles of Optics, Pergamon Press, London, 1964.Google Scholar
  43. 43.
    B.J. Ackerson, R.L. Dougherty, N.M. Reguigui, and U. Nobbman, “Correlation transfer: application of radiative transfer solution methods to photon correlation problems”, J. Thermophys. And Heat Trans., 6, pp. 577–588, 1992.CrossRefGoogle Scholar
  44. 44.
    D.A. Boas, L.E. Campbell, and A.G. Yodh, “Scattering and imaging with diffusing temporal field correlations”, Phys. Rev. Lett., 75, pp. 1855–1858, 1995.CrossRefGoogle Scholar
  45. 45.
    T. Wilson, ed. Confocal microscopy, Academic Press, San Diego, CA, 1990.Google Scholar
  46. 46.
    R.H. Webb, “Confocal optical microscopy”, Rep. Prog. Phys., 59, pp. 427–471, 1996.CrossRefGoogle Scholar
  47. 47.
    B.R. Masters (ed), Selected Papers on Confocal Microscopy, MS131, SPIE Press, Bellingham, WA, 1996.Google Scholar
  48. 48.
    M. Bohnke and B.R. Masters, “Confocal Microscopy of the Cornea,” Prog. Retinal Eye Res., 18, pp. 553–628, 1999.CrossRefGoogle Scholar
  49. 49.
    M. Rajadhyaksha and J.M. Zavislan, “Confocal laser microscope images tissue in vivo”, Laser Focus World, Febriary, 1997.Google Scholar
  50. 50.
    M. Rajadhyaksha, R. Rox Anderson, and R.H. Webb, “Video-rate confocal scanning laser microscope for imaging human tissues in vivo”,Appl. Opt., 38, pp. 2105–2115, 1999.CrossRefGoogle Scholar
  51. 51.
    C.J.J. Sheppard and T. Wilson, “Depth of field in the scanning microscope”, Opt. Lett., 3, pp. 115–117, 1978.CrossRefGoogle Scholar
  52. 52.
    T. Wilson and A.R. Carlini, “Three-dimensional imaging in confocal imaging systems with finite sized detectors”, J. Microsc., 149, pp. 51–66, 1988.CrossRefGoogle Scholar
  53. 53.
    T. Wilson and A.R. Carlini, “Size of the detector in confocal imaging systems”, Opt. Lett., 12, pp. 227–229, 1987.CrossRefGoogle Scholar
  54. 54.
    D.R. Sandison, D.W. Piston, R.M. Williams, and W.W. Webb, “Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field scanning microscopes,” Appl Opt., 34, pp. 3576–3588, 1995.CrossRefGoogle Scholar
  55. 55.
    M. Rajadhyaksha and J.M. Zavislan, “Confocal reflectance microscopy of unstained tissue in vivo” Retinoids, 14, pp. 26–30, 1998.Google Scholar
  56. 56.
    A.F. Fercher, “Optical coherence tomography,” J. Biomed. Opt., 1, pp. 157–173, 1996.CrossRefGoogle Scholar
  57. 57.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, “Optical coherence tomography,” Science, 254, pp. 1178–1181, 1991.CrossRefGoogle Scholar
  58. 58.
    V.V. Tuchin and J. Izatt (Eds), Coherence domain optical methods in biomedical science and clinical applications II, Proc. SPIE, 3251, 1998.Google Scholar
  59. 59.
    V.V. Tuchin and J. Izatt (Eds), Coherence domain optical methods in biomedical science and clinical applications III, Proc. SPIE, 3598, 1999.Google Scholar
  60. 60.
    V.V.Tuchin, J.Izatt, and J. Fujimoto (Eds), Coherence domain optical methods in biomedical science and clinical applications IV, Proc. SPIE, 3915, 2000.Google Scholar
  61. 61.
    J.M. Herrmann, C. Pitris, B. E. Bouma, S.A. Boppart, C.A. Jesser, D.L. Stamper, J.G. Fujimoto, and M.E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography”, The Journal of Rheumatology, 26, pp. 627–635, 1999.Google Scholar
  62. 62.
    B.E. Bouma, G.J. Teamey, S.A. Boppart, M.R. Hee, M.E. Brezinski, and J.G. Fujimoto, “High resolution optical coherence tomographic imaging using a modelocked Ti:Al2O3 laser”, Opt. Lett., 20, pp. 1486–1488, 1995.CrossRefGoogle Scholar
  63. 63.
    S.A. Boppart, B.E. Bouma, M.E. Brezinski, G.J. Tearney, and J.G. Fujimoto, “Imaging developing neural morphology using optical coherence tomography”, Journal of Neuroscience Methods, 70, pp. 65–72, 1996.CrossRefGoogle Scholar
  64. 64.
    H.-W. Wang, A.M. Rollins, and J.A. Izatt, “High speed, full field optical coherence tomography”, Proc. SPIE, 3598, pp. 204–212, 1999.CrossRefGoogle Scholar
  65. 65.
    G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, and J.G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography”, Science, 276, pp. 2037–2039, 1997; G.J.Tearney, S.A.Boppart, B.E.Bouma, M.E. Brezinski, N.J. Weissman,J.F.Southern, and J.G.Fujimoto, “Scanningsingle-mode fiber optic catheter-endoscope for optical coherence tomography”, Opt. Lett., 21, pp. 543–545, 1996.CrossRefGoogle Scholar
  66. 66.
    S.A. Boppart, B.E. Bouma, C. Pitris, G.J. Tearney, and J.G. Fujimoto, “Forward-imaging instruments for optical coherence tomography”, Opt. Lett., 22, pp. 1618–1620, 1997.CrossRefGoogle Scholar
  67. 67.
    G.J. Tearney, M.E. Brezinski, J.F. Southern, B.E. Bouma, S.A. Boppart, and J.G. Fujimoto, “Optical biopsy in human gastrointestinal tissue using optical coherence tomography”, The American Journal of Gastroenterology, 92, pp. 1800–1804,1997.Google Scholar
  68. 68.
    J.M. Herrmann, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, and J.G. Fujimoto, “Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography”, Fertility and Sterility, 70, pp. 155–158, 1998.CrossRefGoogle Scholar
  69. 69.
    W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography”, Opt. Lett., 24, pp. 1221–1223, 1999.CrossRefGoogle Scholar
  70. 70.
    S.A. Boppart, J. Herrmann, C. Pitris, D.L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue”, Journal of Surgical Research, 82, pp. 275–284,1999.CrossRefGoogle Scholar
  71. 71.
    G. Hausier, J.M. Herrmann, R. Kummer, and M.W. Lindner, “Observation of light propagation in volume scatterers with 1011-fold slow motion”, Opt. Lett., 21, pp. 1087–1089, 1996.CrossRefGoogle Scholar
  72. 72.
    A. Eigensee, G. Hausler, J.M. Herrmann, M.W. Lindner, “A new method of short-coherence interferometry in human skin (in vivo) and in solid volume scatterers”, Proc. SPIE, 2925, pp. 169–178,1996.CrossRefGoogle Scholar
  73. 73.
    M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood”, Circulation, 103, pp. 1999–2003, 2001.CrossRefGoogle Scholar
  74. 74.
    V.V. Tuchin, X. Xu, R.K. Wang, “Sedimentation of immersed blood studied by OCT”, Proc. SPIE, 4241, pp. 357–369, 2001.CrossRefGoogle Scholar
  75. 75.
    R.K. Wang, X. Xu, V.V. Tuchin, J.B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents”, J. Opt Soc. Am. B, 18, pp. 948–953, 2001.CrossRefGoogle Scholar
  76. 76.
    D.A. Zimnyakov, V.V. Tuchin, A.A. Mishin “Spatial speckle correlometry in applications to tissue structure monitoring”, Appl Opt., 36, pp. 5594–5607, 1997.CrossRefGoogle Scholar
  77. 77.
    S.M. Rhytov, U.A. Kravtsov, V.l. Tatarsky, Introduction to Statistical Radiophysics, P. 2. Pandom Fields, Nauka Publishers, Moscow, 1978.Google Scholar
  78. 78.
    J. Feder, Fractals, Plenum Press, New York, 1988.CrossRefMATHGoogle Scholar
  79. 79.
    D.A. Zimnyakov, V.V. Tuchin, and S.R. Utts, “A study of statistical properties of partially developed speckle fields as applied to the diagnostics of structural changes in human skin”, Opt Spectrosc., 76, pp. 838–844, 1994.Google Scholar
  80. 80.
    D.A. Zimnyakov, I.L. Maksimova, and V.V. Tuchin, “Controlling optical properties of biological tissues: II. Coherent optical methods for studying the tissue structure”, Opt. Spectrosc., 88, pp. 936–943, 2000.CrossRefGoogle Scholar
  81. 81.
    A.F. Fercher and J.D. Briers, “Flow visualization by means of single-exposure speckle photography”, Opt. Commun., 37, pp. 326–329, 1981.CrossRefGoogle Scholar
  82. 82.
    J.D. Briers and A.F. Fercher, “A laser speckle technique for the visualization of retinal blood flow”, Proc. SPIE, 369, pp. 22–28, 1982.CrossRefGoogle Scholar
  83. 83.
    J.D. Briers and S. Webster, “Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields”, Opt. Commun., 116, pp. 36–42, 1995.CrossRefGoogle Scholar
  84. 84.
    J.D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow”, J Biomed Opt.,1, pp. 174–179, 1996.CrossRefGoogle Scholar
  85. 85.
    J.D. Briers, G. Richards and X.W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)”, J Biomed Opt., 4, pp. 164–175, 1999.CrossRefGoogle Scholar
  86. 86.
    CA. Thompson, K.J. Webb, and A.M. Weiner, “Imaging in scattering media by use of laser speckle”, J. Opt. Soc. Am. A, 14, p.2269–2277, 1997.CrossRefGoogle Scholar
  87. 87.
    L. V. Kuznetsova, D.A. Zimnyakov, “Multiple-beam interferometry of turbid media with quasi-monochromatic light”, Proc. SPIE, 4001, pp. 217–223, 2000.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Dmitry A. Zimnyakov
    • 1
  • Valery V. Tuchin
    • 1
  1. 1.Saratov State UniversityRussian Federation

Personalised recommendations