Skip to main content

Abstract

Comparative analysis of the modern optical technologies based on the use of laser light for tissue structure diagnostics and imaging is given in this chapter. A great interest to the development and medical applications of optical imaging methods that has appeared in the last two decades, was stimulated by such undoubted advantages of these techniques as safety, potentiality to obtain high spatial resolution on the cellular and even subcellular level in combination with relatively large penetration depths of the probe laser light in the visible and near-infrared regions, possibility to provide the multifunctional diagnostics and imaging of tissues and organs, etc. It is necessary to note that various aspects of laser diagnostics and imaging in biology and medicine were discussed in a series of special issues and books of selected papers [16]. Here we will discuss the basic physical principles, potentialities, limitations and instrumentation design for such laser tomography methods as various diffusing light technologies, laser confocal microscopy, optical coherence tomography and speckle imaging techniques. Also, the most important examples of clinical and laboratory applications of laser imaging for structure and functional diagnostics of tissues and organs will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Müller, B. Chance, R. Alfano et al. (eds.), Medical Optical Tomography: Functional Imaging and Monitoring, SPIE Press, Bellingham, WA, IS11, 1993.

    Google Scholar 

  2. O. Minet, G. Mueller, and J. Beuthan (eds.), Selected Papers on Optical Tomography, Fundamentals and Applications in Medicine, SPIE Press, Bellingham, WA, MS 147, 1998.

    Google Scholar 

  3. V.V. Tuchin (ed), Selected Papers on Tissue Optics: Applications in Medical Diagnostics and Therapy, SPIE Press, Bellingham, WA, MS 102, 1994.

    Google Scholar 

  4. H. Podbielska, C.K. Hitzenberger, V.V. Tuchin (eds), Special section on interferometry in biomedicine, J. Biomed. Optics, 3, pp.5–79, pp. 225–266, 1998.

    Google Scholar 

  5. V.V. Tuchin, H. Podbielska, C.K. Hitzenberger, (eds), Special section on coherence domain optical methods in biomedical science and clinics, J. Biomed. Optics, 4, pp. 94–190,1999.

    Google Scholar 

  6. V.V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis, SPIE Tutorial Texts in Optical Engineering, TT38, SPIE Press, Bellingham, WA, 2000.

    Google Scholar 

  7. K.M. Yoo, Feng Liu, and R.R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?”, Phys. Rev. Lett., 64, pp. 2647–2650, 1990.

    Article  Google Scholar 

  8. A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, New York, 1978.

    Google Scholar 

  9. D.S. Smith, W.J. Levy, S. Carter, M. Haida, B. Chance, in Proc. Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. Alfano, eds., SPIE, Bellingham, WA, p.511, 1993.

    Chapter  Google Scholar 

  10. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light”, Physics Today, 48, pp. 34–40, 1995.

    Article  Google Scholar 

  11. G. Jarry, S. Ghesquierre, J.M. Maarek, S. Debray, Bui-Mong-Hung, and D.Laurent, “Imaging mammalian tissues and organs using laser collimated transülumination”, J. Biomed. Eng., 6, pp. 70–74, 1984.

    Article  Google Scholar 

  12. P.C. Jackson, P.H. Stevens, J.H. Smith, D. Kear, H. Key, and P.N.T. Wells, “The development of a system for transillumination computed tomography”, Br. J. Radiol., 60, pp. 375–380, 1987.

    Article  Google Scholar 

  13. M. Tamura, Y. Nomura, and O. Hazeki, “Laser tissue spectroscopy - near infrared CT”, Rev. Laser Eng. (Japan), 15, pp. 74–82, 1987.

    Article  Google Scholar 

  14. I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, K. Nakagawa, and M. Tamura, “Non-invasive haemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry”, Proc. SPIE, 1431, pp. 284-293,1991.

    Article  Google Scholar 

  15. S.R. Arridge, P. Van der Zee, M. Cope, and D.T. Delpy, “New results for the development of infra-red absorption imaging”, Proc. SPIE, 1245, pp. 91–103,1990.

    Google Scholar 

  16. S.R. Arridge, P. Van der Zee, M. Cope, and D.T. Delpy, “Reconstruction methods for infrared absorption imaging”, Proc. SPIE, 1431, pp. 204–215, 1990.

    Article  Google Scholar 

  17. J. Fishkin, E. Gratton, M.J. van de Ven, and W.W. Mantulin, “Diffusion of intensity modulated near infrared light in turbid media”, Proc. SPIE, 1431, pp. 122–135, 1991.

    Article  Google Scholar 

  18. K.W. Berndt and J.R. Lakowich, “Detection and localization of absorbers in scattering media using frequency domain principles”, Proc. SPIE, 1431, pp. 149–158, 1991.

    Article  Google Scholar 

  19. D.A. Boas, M.A. O’Leary, B. Chance, and A.G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications”, Proc. Natl. Acad. Sei. USA, 91, pp. 4887–4891, 1994.

    Article  Google Scholar 

  20. M.A. O’Leary, D.A. Boas, B. Chance, and A.G. Yodh, “Refraction of diffuse photon density waves”, Phys. Rev. Lett., 69, pp. 2658–661, 1992.

    Article  Google Scholar 

  21. J.M. Schmitt, A. Knuttel, and J.R. Knutson, “Interference of diffusive light waves”, J. Opt. Soc.Am. A, 9, pp.l832–1843, 1992.

    Article  Google Scholar 

  22. B.J. Tromberg, L.O. Svaasand, T.T. Tsay, and R.C. Hackell, “Properties of photon density waves in multiply scattering media”, Appl. Opt., 32, pp. 607–616, 1993.

    Article  Google Scholar 

  23. W.W. Mantulin, S. Fantini, M. A. Franceschrni-Fantini, S. A. Walker, J.S. Maier, and E. Gratton, “Tissue optical parameter map generated with frequency-domain spectroscopy,” Proc. SPIE, 2396, pp.323–330,1995.

    Article  Google Scholar 

  24. R.M. Danen, Y. Wang, X.D. Li, et al.,”Regional imager for low-resolution functional imaging of the brain with diffusing near-infrared light,” Photochem. Photobiol., 67, pp. 33–40, 1998.

    Article  Google Scholar 

  25. X.D. Li, T. Durduran, A.G. Yodh, et al., “Diffraction tomography for biochemical imaging with diffuse photon-density waves,” Opt. Lett., 22, pp. 573–575, 1997.

    Article  Google Scholar 

  26. Y. Aizu and T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood flow,” Opt. Laser Technol., 23, pp. 205–219, 1991.

    Article  Google Scholar 

  27. S. Fantini, M.A. Franceschini, J.B. Fishkin, et al., “Quantitative deterrnination of the absorption and spectra of chromophores in strongly scattering media: a hght-emitting-diode based technique,” Appl. Opt., 32, pp. 5204–5212, 1994; M.A. Franceschini, K.T. Moesta, and S. Fantini, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sei. USA, 94, pp. 6468–6473, 1997.

    Article  Google Scholar 

  28. J.B. Fishkin, O. Coquoz, E.R. Anderson, et al., “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl Opt., 36, pp. 10–20, 1997.

    Article  Google Scholar 

  29. B. Tromberg, O. Coquoz, J.B. Fishkin, et al., “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Phil. Trans. R. Soc. Lond. B., 352, pp. 661–668, 1997.

    Article  Google Scholar 

  30. A. Knüttel, J.M. Schmitt, and J.R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt., 32, pp. 381–389, 1993.

    Article  Google Scholar 

  31. B. Chance, M. Cope, E. Gratton, N. Ramanujam and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,”.Rev. Sei. Instrum., 69, pp. 3457–3481, 1998.

    Article  Google Scholar 

  32. B. Chance, K. Kang, L. He, H. Liu, and S. Zhou, “Precision localization of hidden absorbers in body tissues with phased-array optical systems,” Rev. Sei, Instrum., 67, pp. 4324–4332, 1996.

    Article  Google Scholar 

  33. M. G. Erickson, J. S. Reynolds, and K. J. Webb, “Comparison of sensitivity for single-source and dual-interfering-source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A, 14, pp.3083–3092, 1997.

    Article  Google Scholar 

  34. B. Chance, E. Anday, S. Nioka, et al., “A novel method for fast imaging of brain function, non-invasively, with light,” Optics Express, 2, pp. 411–423, 1998.

    Article  Google Scholar 

  35. J.G. Fujimoto and M.S. Patterson (Eds.), Advances in Optical Imaging and Photon Migration, OSA TOPS, 21, 1998.

    Google Scholar 

  36. B. Chance, E. Anday, E. Conant, S. Nioka, S. Zhou, and R Long, “Rapid and sensitive optical imaging of tissue functional activity, and breast,” OSA TOPS, 21, pp. 218–225,1998.

    Google Scholar 

  37. D.J. Papaioannou, G.W. Hooft, S.B. Colak, and J.T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J.Biomed. Opt., 1, pp. 305–310, 1996.

    Article  Google Scholar 

  38. E.B. de Haller, “Time-resolved transiUumination and optical tomography,” J.Biomed. Opt., 1, pp. 7–17, 1996.

    Article  Google Scholar 

  39. G. Maret and P.E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers”, Z Phys. B, 65, pp. 409–413, 1987.

    Article  Google Scholar 

  40. D.A. Boas and A.G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlations”, J. Opt Soc. Am. A, 14, pp. 192–215, 1997.

    Article  Google Scholar 

  41. A.G. Yodh, N. Georgiades, and D.J. Pine, “Diffusing-wave interferometry”, Opt. Communications, 83, pp. 56–59, 1991.

    Article  Google Scholar 

  42. M. Born and E. Wolf, Principles of Optics, Pergamon Press, London, 1964.

    Google Scholar 

  43. B.J. Ackerson, R.L. Dougherty, N.M. Reguigui, and U. Nobbman, “Correlation transfer: application of radiative transfer solution methods to photon correlation problems”, J. Thermophys. And Heat Trans., 6, pp. 577–588, 1992.

    Article  Google Scholar 

  44. D.A. Boas, L.E. Campbell, and A.G. Yodh, “Scattering and imaging with diffusing temporal field correlations”, Phys. Rev. Lett., 75, pp. 1855–1858, 1995.

    Article  Google Scholar 

  45. T. Wilson, ed. Confocal microscopy, Academic Press, San Diego, CA, 1990.

    Google Scholar 

  46. R.H. Webb, “Confocal optical microscopy”, Rep. Prog. Phys., 59, pp. 427–471, 1996.

    Article  Google Scholar 

  47. B.R. Masters (ed), Selected Papers on Confocal Microscopy, MS131, SPIE Press, Bellingham, WA, 1996.

    Google Scholar 

  48. M. Bohnke and B.R. Masters, “Confocal Microscopy of the Cornea,” Prog. Retinal Eye Res., 18, pp. 553–628, 1999.

    Article  Google Scholar 

  49. M. Rajadhyaksha and J.M. Zavislan, “Confocal laser microscope images tissue in vivo”, Laser Focus World, Febriary, 1997.

    Google Scholar 

  50. M. Rajadhyaksha, R. Rox Anderson, and R.H. Webb, “Video-rate confocal scanning laser microscope for imaging human tissues in vivo”,Appl. Opt., 38, pp. 2105–2115, 1999.

    Article  Google Scholar 

  51. C.J.J. Sheppard and T. Wilson, “Depth of field in the scanning microscope”, Opt. Lett., 3, pp. 115–117, 1978.

    Article  Google Scholar 

  52. T. Wilson and A.R. Carlini, “Three-dimensional imaging in confocal imaging systems with finite sized detectors”, J. Microsc., 149, pp. 51–66, 1988.

    Article  Google Scholar 

  53. T. Wilson and A.R. Carlini, “Size of the detector in confocal imaging systems”, Opt. Lett., 12, pp. 227–229, 1987.

    Article  Google Scholar 

  54. D.R. Sandison, D.W. Piston, R.M. Williams, and W.W. Webb, “Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field scanning microscopes,” Appl Opt., 34, pp. 3576–3588, 1995.

    Article  Google Scholar 

  55. M. Rajadhyaksha and J.M. Zavislan, “Confocal reflectance microscopy of unstained tissue in vivo” Retinoids, 14, pp. 26–30, 1998.

    Google Scholar 

  56. A.F. Fercher, “Optical coherence tomography,” J. Biomed. Opt., 1, pp. 157–173, 1996.

    Article  Google Scholar 

  57. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, “Optical coherence tomography,” Science, 254, pp. 1178–1181, 1991.

    Article  Google Scholar 

  58. V.V. Tuchin and J. Izatt (Eds), Coherence domain optical methods in biomedical science and clinical applications II, Proc. SPIE, 3251, 1998.

    Google Scholar 

  59. V.V. Tuchin and J. Izatt (Eds), Coherence domain optical methods in biomedical science and clinical applications III, Proc. SPIE, 3598, 1999.

    Google Scholar 

  60. V.V.Tuchin, J.Izatt, and J. Fujimoto (Eds), Coherence domain optical methods in biomedical science and clinical applications IV, Proc. SPIE, 3915, 2000.

    Google Scholar 

  61. J.M. Herrmann, C. Pitris, B. E. Bouma, S.A. Boppart, C.A. Jesser, D.L. Stamper, J.G. Fujimoto, and M.E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography”, The Journal of Rheumatology, 26, pp. 627–635, 1999.

    Google Scholar 

  62. B.E. Bouma, G.J. Teamey, S.A. Boppart, M.R. Hee, M.E. Brezinski, and J.G. Fujimoto, “High resolution optical coherence tomographic imaging using a modelocked Ti:Al2O3 laser”, Opt. Lett., 20, pp. 1486–1488, 1995.

    Article  Google Scholar 

  63. S.A. Boppart, B.E. Bouma, M.E. Brezinski, G.J. Tearney, and J.G. Fujimoto, “Imaging developing neural morphology using optical coherence tomography”, Journal of Neuroscience Methods, 70, pp. 65–72, 1996.

    Article  Google Scholar 

  64. H.-W. Wang, A.M. Rollins, and J.A. Izatt, “High speed, full field optical coherence tomography”, Proc. SPIE, 3598, pp. 204–212, 1999.

    Article  Google Scholar 

  65. G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, and J.G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography”, Science, 276, pp. 2037–2039, 1997; G.J.Tearney, S.A.Boppart, B.E.Bouma, M.E. Brezinski, N.J. Weissman,J.F.Southern, and J.G.Fujimoto, “Scanningsingle-mode fiber optic catheter-endoscope for optical coherence tomography”, Opt. Lett., 21, pp. 543–545, 1996.

    Article  Google Scholar 

  66. S.A. Boppart, B.E. Bouma, C. Pitris, G.J. Tearney, and J.G. Fujimoto, “Forward-imaging instruments for optical coherence tomography”, Opt. Lett., 22, pp. 1618–1620, 1997.

    Article  Google Scholar 

  67. G.J. Tearney, M.E. Brezinski, J.F. Southern, B.E. Bouma, S.A. Boppart, and J.G. Fujimoto, “Optical biopsy in human gastrointestinal tissue using optical coherence tomography”, The American Journal of Gastroenterology, 92, pp. 1800–1804,1997.

    Google Scholar 

  68. J.M. Herrmann, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, and J.G. Fujimoto, “Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography”, Fertility and Sterility, 70, pp. 155–158, 1998.

    Article  Google Scholar 

  69. W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, and J.G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography”, Opt. Lett., 24, pp. 1221–1223, 1999.

    Article  Google Scholar 

  70. S.A. Boppart, J. Herrmann, C. Pitris, D.L. Stamper, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomography-guided laser ablation of surgical tissue”, Journal of Surgical Research, 82, pp. 275–284,1999.

    Article  Google Scholar 

  71. G. Hausier, J.M. Herrmann, R. Kummer, and M.W. Lindner, “Observation of light propagation in volume scatterers with 1011-fold slow motion”, Opt. Lett., 21, pp. 1087–1089, 1996.

    Article  Google Scholar 

  72. A. Eigensee, G. Hausler, J.M. Herrmann, M.W. Lindner, “A new method of short-coherence interferometry in human skin (in vivo) and in solid volume scatterers”, Proc. SPIE, 2925, pp. 169–178,1996.

    Article  Google Scholar 

  73. M. Brezinski, K. Saunders, C. Jesser, X. Li, and J. Fujimoto, “Index matching to improve optical coherence tomography imaging through blood”, Circulation, 103, pp. 1999–2003, 2001.

    Article  Google Scholar 

  74. V.V. Tuchin, X. Xu, R.K. Wang, “Sedimentation of immersed blood studied by OCT”, Proc. SPIE, 4241, pp. 357–369, 2001.

    Article  Google Scholar 

  75. R.K. Wang, X. Xu, V.V. Tuchin, J.B. Elder, “Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents”, J. Opt Soc. Am. B, 18, pp. 948–953, 2001.

    Article  Google Scholar 

  76. D.A. Zimnyakov, V.V. Tuchin, A.A. Mishin “Spatial speckle correlometry in applications to tissue structure monitoring”, Appl Opt., 36, pp. 5594–5607, 1997.

    Article  Google Scholar 

  77. S.M. Rhytov, U.A. Kravtsov, V.l. Tatarsky, Introduction to Statistical Radiophysics, P. 2. Pandom Fields, Nauka Publishers, Moscow, 1978.

    Google Scholar 

  78. J. Feder, Fractals, Plenum Press, New York, 1988.

    Book  MATH  Google Scholar 

  79. D.A. Zimnyakov, V.V. Tuchin, and S.R. Utts, “A study of statistical properties of partially developed speckle fields as applied to the diagnostics of structural changes in human skin”, Opt Spectrosc., 76, pp. 838–844, 1994.

    Google Scholar 

  80. D.A. Zimnyakov, I.L. Maksimova, and V.V. Tuchin, “Controlling optical properties of biological tissues: II. Coherent optical methods for studying the tissue structure”, Opt. Spectrosc., 88, pp. 936–943, 2000.

    Article  Google Scholar 

  81. A.F. Fercher and J.D. Briers, “Flow visualization by means of single-exposure speckle photography”, Opt. Commun., 37, pp. 326–329, 1981.

    Article  Google Scholar 

  82. J.D. Briers and A.F. Fercher, “A laser speckle technique for the visualization of retinal blood flow”, Proc. SPIE, 369, pp. 22–28, 1982.

    Article  Google Scholar 

  83. J.D. Briers and S. Webster, “Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields”, Opt. Commun., 116, pp. 36–42, 1995.

    Article  Google Scholar 

  84. J.D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow”, J Biomed Opt.,1, pp. 174–179, 1996.

    Article  Google Scholar 

  85. J.D. Briers, G. Richards and X.W. He, “Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)”, J Biomed Opt., 4, pp. 164–175, 1999.

    Article  Google Scholar 

  86. CA. Thompson, K.J. Webb, and A.M. Weiner, “Imaging in scattering media by use of laser speckle”, J. Opt. Soc. Am. A, 14, p.2269–2277, 1997.

    Article  Google Scholar 

  87. L. V. Kuznetsova, D.A. Zimnyakov, “Multiple-beam interferometry of turbid media with quasi-monochromatic light”, Proc. SPIE, 4001, pp. 217–223, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zimnyakov, D.A., Tuchin, V.V. (2002). Laser Tomography. In: Vij, D.R., Mahesh, K. (eds) Medical Applications of Lasers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0929-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0929-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7662-0

  • Online ISBN: 978-1-4615-0929-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics