Natriuretic peptide receptor: Structure and signaling

  • Kunio S. Misono
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 36)


The ANP receptor is a single-transmembrane sequence receptor coupled to guanylate cyclase (GCase). It belongs to a family of GCase-coupled receptors that share a common overall molecular configuration. Collectively, theses GCase-coupled receptors belong to a larger family of single-transmembrane sequence receptors that include growth hormone and cytokine receptors. The signal transduction mechanism of these receptors has not been thoroughly understood. Receptor dimerization (or oligomerization) has been suggested as the mechanism. However, at least for the ANP receptor, dimerization has been seen to occur in the absence of the ligand, suggesting that an additional, as yet unknown effect of hormone binding is responsible for receptor activation. To understand the signaling mechanism, some of the functions and subsites of the ANP receptor critical for signaling have been identified, including the binding stoichiometry, receptor self-association, the juxtamembrane hinge structure containing a signature motif critical for GCase signaling, ANP-binding site residues, chloride-dependence of ANP binding, disulfide linkages, and glycosylation structures. These structures and the functional sites have been identified in the crystal structure of dimerized recombinant extracellular domain of the ANP receptor. The intracellular domain contains a kinase-homologous domain that regulates the activity of the GCase domain responding to ANP binding and also to binding of the allosteric effector ATP. Moreover, this regulatory role of the kinase-homologous domain is modulated by its own phosphorylated state. Although considerable data have been accumulated, the mechanism ofANP receptor signaling has not been well defined. Further studies are necessary to understand how ANP binds to the receptor, what conformational effect is caused by ANP binding, how this effect is transduced across the cell membrane, and how this transmembrane effect leads to stimulation of the GCase catalytic activity. (Mol Cell Biochem 230: 49–60, 2002)

Key words

atrial natriuretic peptide receptor signal transduction protein structure binding feedback regulation protein crystallography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Bold J, Borenstein HB, Veress AT, Sonnenberg H: A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Science 28: 89–94, 1981CrossRefGoogle Scholar
  2. 2.
    Currie MG, Geller DM, Cole BR, Boylan JG, YuSheng W, Holmberg SW, Needleman P: Bioactive cardiac substances: potent vasorelaxant activity in mammalian atria. Science 221: 71–73, 1983PubMedCrossRefGoogle Scholar
  3. 3.
    Grammer RT, Fukumi H, Inagami T, Misono KS: Rat atrial natriuretic factor. Purification and vasorelaxant activity. Biochem Biophys Res Commun 116: 696–703, 1983PubMedCrossRefGoogle Scholar
  4. 4.
    Cantin M., Gutkowska J, Thibault G, Garcia R, Anand-Srivastava M, Hamet P, Schiffrin E, Genest J: The heart as an endocrine gland. J Hypertens(suppl 2): 5329–5331, 1984Google Scholar
  5. 5.
    Sonnenberg H: The physiology of atrial natriuretic factor. Can J Physiol Pharmacol 65: 2021–2023, 1987PubMedCrossRefGoogle Scholar
  6. 6.
    Gerzer R, Heim JM, Schutte B, Weil J: Cellular mechanisms of action of atrial natriuretic factor. KIM Wochenschr 65: 109–114, 1987Google Scholar
  7. 7.
    Itoh H, Pratt RE, Dzau VJ: Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells. J Clin Invest 86: 1690–1697, 1990PubMedCrossRefGoogle Scholar
  8. 8.
    Furuya M, Aisaka K, Miyazaki T, Honbou N, Kawashima K, Ohno T, Tanaka S, Minamino N, Kangawa K, Matsuo H: C-type natriuretic peptide inhibits intimai thickening after vascular injury. Biochem Biophys Res Commun 193: 248–253, 1993PubMedCrossRefGoogle Scholar
  9. 9.
    Wu CF, Bishopric NH, Pratt RE: Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 272: 14860–14866, 1997PubMedCrossRefGoogle Scholar
  10. 10.
    Suenobu N, Shichiri M, Iwashina M, Marumo F, Hirata Y: Natriuretic peptides and nitric oxide induce endothelial apoptosis via a cGMP-dependent mechanism Arterioscler Thromb Vasc Biol 19: 140–146, 1999PubMedCrossRefGoogle Scholar
  11. 11.
    John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, Flynn TG, Smithies O: Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267: 679–678, 1995PubMedCrossRefGoogle Scholar
  12. 12.
    Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N: Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94: 14730–14735, 1997PubMedCrossRefGoogle Scholar
  13. 13.
    Misono KS, Fukumi H, Grammer RT, Inagami T: Rat atrial natriuretic factor: complete amino acid sequence and disulfide linkage essential for biological activity. Biochem Biophys Res Commun 119: 524–529, 1984PubMedCrossRefGoogle Scholar
  14. 14.
    Bovy PR: Structure activity in the atrial natriuretic peptide (ANP) family. Med Res Rev 10: 115–142, 1990PubMedCrossRefGoogle Scholar
  15. 15.
    Nakao K, Ogawa Y, Suga S, Imura H: Molecular biology and biochemistry of the natriuretic peptide system. I: Natriuretic peptides. J Hypertens 10: 907–912, 1992PubMedGoogle Scholar
  16. 16.
    Sudoh T, Minamino N, Kangawa K, Matsuo H: C-type natriuretic peptide (CNP): A new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168: 863–870, 1990PubMedCrossRefGoogle Scholar
  17. 17.
    Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV: Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252: 120–123, 1991PubMedCrossRefGoogle Scholar
  18. 18.
    Imura H, Nakao K, Itoh H: The natriuretic peptide system in the brain: Implications in the central control of cardiovascular and neuroendocrine functions. Front Neuroendocrinol 13: 217–249, 1992PubMedGoogle Scholar
  19. 19.
    Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL: The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58: 1155–1162, 1989PubMedCrossRefGoogle Scholar
  20. 20.
    Nakao K, Ogawa Y, Suga S, Imura H: Molecular biology and biochemistry of the natriuretic peptide system. II: Natriuretic peptide receptors. J Hypertens 10: 1111–1114, 1992PubMedCrossRefGoogle Scholar
  21. 21.
    Chinkers M, Garbers DL: The protein kinase domain of the ANP receptor is required for signaling. Science 245: 1392–1394, 1989PubMedCrossRefGoogle Scholar
  22. 22.
    Kurose H, Inagami T, Ui M: Participation of adenosine 5’-triphosphate in the activation of membrane-bound guanylate cyclase by the atrial natriuretic factor. FEBS Lett 219: 375–379, 1987PubMedCrossRefGoogle Scholar
  23. 23.
    Goraczniak RM, Duda T, Sharma RK: A structural motif that defines the ATP-regulatory module of guanylate cyclase in atrial natriuretic factor signalling. Biochem J 282: 533–537, 1992PubMedGoogle Scholar
  24. 24.
    Thorpe DS, Garbers DL: The membrane form of guanylate cyclase. Homology with a subunit of the cytoplasmic form of the enzyme. J Biol Chem 264: 6545–66549, 1989PubMedGoogle Scholar
  25. 25.
    Schulz S, Green CK, Yuen PS, Garbers DL: Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 63: 941–948, 1990PubMedCrossRefGoogle Scholar
  26. 26.
    Lowe DG, Dizhoor AM, Liu K, Gu Q, Spencer M, Laura R, Lu L, Hurley JB: Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc Natl Acad Sci USA 92: 5535–5539, 1995PubMedCrossRefGoogle Scholar
  27. 27.
    Fulle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL: A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci USA 92: 3571–3575, 1995PubMedCrossRefGoogle Scholar
  28. 28.
    Yang RB, Foster DC, Garbers DL, Fulle HJ: Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 92: 602–606, 1995PubMedCrossRefGoogle Scholar
  29. 29.
    Schulz S, Wedel BJ, Matthews A, Garbers DL: The cloning and expression of a new guanylyl cyclase orphan receptor. J Biol Chem 273: 1032–1037, 1998PubMedCrossRefGoogle Scholar
  30. 30.
    Baude EJ, Arora VK, Yu S, Garbers DL, Wedel BJ: The cloning of a Caenorhabditis elegans guanylyl cyclase and the construction of a ligand-sensitive mammalian/nematode chimeric receptor. J Biol Chem 272: 16035–16039, 1997PubMedCrossRefGoogle Scholar
  31. 31.
    Yu S, Avery L, Baude E, Garbers DL: Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc Natl Acad Sci USA 94: 3384–3387, 1997PubMedCrossRefGoogle Scholar
  32. 32.
    Huo X, Abe T, Misono KS: Ligand binding-dependent limited proteolysis of the atrial natriuretic peptide receptor: Juxtamembrane hinge structure essential for transmembrane signal transduction. Biochemistry 38: 16941–16951, 1999PubMedCrossRefGoogle Scholar
  33. 33.
    Miyagi M, Misono KS: Disulfide bond structure of the atrial natriuretic peptide receptor extracellular domain: Conserved disulfide bonds among guanylate cyclase-coupled receptors. Biochim Biophys Acta 1478: 30–38, 2000PubMedCrossRefGoogle Scholar
  34. 34.
    Misono KS, Sivasubramanian N, Berkner K, Zhang X: Expression and purification of the extracellular ligand-binding domain of the atrial natriuretic peptide (ANP) receptor: monovalent binding with ANP induces 2:2 complexes. Biochemistry 38: 516–523, 1999PubMedCrossRefGoogle Scholar
  35. 35.
    Miyagi M, Zhang X, Misono KS: Glycosylation sites in the atrial natriuretic peptide receptor oligosaccharide structures are not required for hormone binding. Eur J Biochem 267: 5758–5768, 2000PubMedCrossRefGoogle Scholar
  36. 36.
    Lowe DG, Fendly BM: Human natriuretic peptide receptor-A guanylyl cyclase. Hormone cross-linking and antibody reactivity distinguish receptor glycoforms. J Biol Chem 267: 21691–21697, 1992PubMedGoogle Scholar
  37. 37.
    Fenrick R, McNicoll N, De Lean A: Glycosylation is critical for natriuretic peptide receptor-B function. Mol Cell Biochem 165: 103–109, 1996PubMedCrossRefGoogle Scholar
  38. 38.
    Fenrick R, Bouchard N, McNicoll N, De Lean A: Glycosylation of asparagine 24 of the natriuretic peptide receptor-B is crucial for the formation of a competent ligand binding domain. Mol Cell Biochem 173: 25–32, 1997PubMedCrossRefGoogle Scholar
  39. 39.
    van den Akker F, Zhang X, Miyagi M, Huo X, Misono KS, Yee VC: Structure of the dimerized hormone-binding domain of a guanylylcyclase-coupled receptor. Nature 406: 101–104, 2000PubMedCrossRefGoogle Scholar
  40. 40.
    Koesling D, Bohme E, Schultz G: Guanylyl cyclases, a growing family of signal-transducing enzymes. FASEB J 5: 2785–2791, 1991PubMedGoogle Scholar
  41. 41.
    Schulz S, Yuen PS, Garbers DL: The expanding family of guanylyl cyclases. Trends Pharmacol Sci 12: 116–120, 1991PubMedCrossRefGoogle Scholar
  42. 42.
    Chinkers M, Wilson EM: Ligand-independent oligomerization of natriuretic peptide receptors. Identification of heteromeric receptors and a dominant negative mutant. J Biol Chem 267: 18589–18597, 1992PubMedGoogle Scholar
  43. 43.
    Lowe DG: Human natriuretic peptide receptor-A guanylyl cyclase is self-associated prior to hormone binding. Biochemistry 31: 10421–10425, 1992PubMedCrossRefGoogle Scholar
  44. 44.
    Rondeau JJ, McNicoll N, Gagnon J, Bouchard N, Ong H, De Lean A: Stoichiometry of the atrial natriuretic factor-RI receptor complex in the bovine zona glomerulosa. Biochemistry 34: 2130–2136, 1995PubMedCrossRefGoogle Scholar
  45. 45.
    Kuno T, Andresen JW, Kamisaki Y, Waldman SA, Chang LY, Saheki S, Leitman DC, Nakane M, Murad F: Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem 261: 5817–5823, 1986PubMedGoogle Scholar
  46. 46.
    Takayanagi R, Inagami T, Snajdar RM, Imada T, Tamura M, Misono KS: Two distinct forms of receptors for atrial natriuretic factor in bovine adrenocortical cells. Purification, ligand binding, and peptide mapping. J Biol Chem 262: 12104–12113, 1987PubMedGoogle Scholar
  47. 47.
    Meloche S, McNicoll N, Liu B, Ong H, De Lean A: Atrial natriuretic factor R1 receptor from bovine adrenal zona glomerulosa: Purification, characterization, and modulation by amiloride. Biochemistry 27: 8151–8158, 1988Google Scholar
  48. 48.
    He X, Nishio K, Misono KS: High-yield affinity alkylation of the atrial natriuretic factor receptor binding site. Bioconjug Chem 6: 541–548, 1995PubMedCrossRefGoogle Scholar
  49. 49.
    Misono KS: Determination of binding-site sequences of the atrial natriuretic peptide receptor by stepwise-affinity alkylation. In: Y. Shimonishi (ed). Peptide Science-Present and Future. Kluwer Academic Publishers, Dordrecht, Netherlands, 1999, pp 163–166.Google Scholar
  50. 50.
    McNicoll N, Gagnon J, Rondeau JJ, Ong H, De Lean A: Localization by photoaffinity labeling of natriuretic peptide receptor-A binding domain. Biochemistry 35: 12950–12956, 1996PubMedCrossRefGoogle Scholar
  51. 51.
    Saper MA, Quiocho FA: Leucine, isoleucine, valine-binding protein from Escherichia coli. Structure at 3.0-A resolution and location of the binding site. J Biol Chem 258: 11057–11062, 1983PubMedGoogle Scholar
  52. 52.
    O’Hara BP, Norman RA, Wan PT, Roe SM, Barrett TE, Drew RE, Pearl LH: Crystal structure and induction mechanism of AmiC-AmiR: A ligand-regulated transcription antitermination complex. Embo J 18: 5175–5186, 1999PubMedCrossRefGoogle Scholar
  53. 53.
    Misono KS: Atrial natriuretic factor binding to its receptor is dependent on chloride concentration: A possible feedback-control mechanism in renal salt regulation. Circ Res 86: 1135–1139, 2000PubMedCrossRefGoogle Scholar
  54. 54.
    Hanley MJ, Kokko JP: Study of chloride transport across the rabbit cortical collecting tubule. J Clin Invest 62: 39–44, 1978PubMedCrossRefGoogle Scholar
  55. 55.
    Moe OW, Berry CA, Rector FC: Renal transport of glucose, amino acid, sodium, chloride, and water. In: B.M. Brenner (ed). The Kidney, 6th edn. 2000, pp 375–415Google Scholar
  56. 56.
    Burnett JC Jr, Kao PC, Hu DC, Heser DW, Heublein D, Granger JP, Opgenorth TJ, Reeder GS: Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 231: 1145–1147, 1986PubMedCrossRefGoogle Scholar
  57. 57.
    Koepke JP, DiBona GF: Blunted natriuresis to atrial natriuretic peptide in chronic sodium-retaining disorders. Am J Physiol 252: F865–F871, 1987PubMedGoogle Scholar
  58. 58.
    Warner L, Skorecki K, Blendis LM, Epstein M: Atrial natriuretic factor and liver disease. Hepatology 17: 500–513, 1993PubMedCrossRefGoogle Scholar
  59. 59.
    Field LJ, Veress AT, Steinhelper ME, Cochrane K, Sonnenberg H: Kidney function in ANF-transgenic mice: Effect of blood volume expansion. Am J Physiol 260: R1–R5, 1991PubMedGoogle Scholar
  60. 60.
    Honrath U, Chong CK, Wilson DR, Sonnenberg H: Dietary salt extremes and renal function in rats: Effect of atrial natriuretic factor. Clin Sci (Colch) 87: 525–531, 1994Google Scholar
  61. 61.
    Marala RB, Sitaramayya A, Sharma RK: Dual regulation of atrial natriuretic factor-dependent guanylate cyclase activity by ATP. FEBS Lett 281: 73–76, 1991PubMedCrossRefGoogle Scholar
  62. 62.
    Chinkers M, Singh S, Garbers DL: Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J Biol Chem 266: 4088–4093, 1991PubMedGoogle Scholar
  63. 63.
    Duda T, Goraczniak RM, Sharma RK: Core sequence of ATP regulatory module in receptor guanylate cyclases. FEBS Lett 315: 143–148, 1993PubMedCrossRefGoogle Scholar
  64. 64.
    Duda T, Sharma RK: ATP modulation of the ligand binding and signal transduction activities of the type C natriuretic peptide receptor guanylate cyclase. Mol Cell Biochem 152: 179–183, 1995PubMedCrossRefGoogle Scholar
  65. 65.
    Duda T, Yadav P, Jankowska A, Venkataraman V, Sharma RK: Three dimensional atomic model and experimental validation for the ATP-Regulated Module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Mol Cell Biochem 214: 7–14, 2000PubMedCrossRefGoogle Scholar
  66. 66.
    Wong SK, Ma CP, Foster DC, Chen AY, Garbers DL. The guanylyl cyclase-A receptor transduces an atrial natriuretic peptide/ATP activation signal in the absence of other proteins. J Biol Chem 270: 30818–30822, 1995Google Scholar
  67. 67.
    Jewett JR, Koller KJ, Goeddel DV, Lowe DG: Hormonal induction of low affinity receptor guanylyl cyclase. Embo J 12: 769–777, 1993PubMedGoogle Scholar
  68. 68.
    Potter LR, Garbers DL: Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J Biol Chem 267: 14531–14534, 1992PubMedGoogle Scholar
  69. 69.
    Potter LR, Hunter T: Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor. Mol Cell Biol 18: 2164–2172, 1998PubMedGoogle Scholar
  70. 70.
    Potter LR, Hunter T: Guanylyl cyclase-linked natriuretic peptide receptors: structure and regulation. J Biol Chem 276: 6057–6060, 2001PubMedCrossRefGoogle Scholar
  71. 71.
    Potter LR, Hunter T: Identification and characterization of the major phosphorylation sites of the B-type natriuretic peptide receptor. J Biol Chem 273: 15533–15539, 1998PubMedCrossRefGoogle Scholar
  72. 72.
    Wilson EM, Chinkers M: Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34: 4696–4701, 1995PubMedCrossRefGoogle Scholar
  73. 73.
    Livnah O, Stura EA, Middleton SA, Johnson DL, Jolliffe LK, Wilson IA: Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation Science 283: 987–990, 1999PubMedCrossRefGoogle Scholar
  74. 74.
    Remy I, Wilson IA, Michnick SW: Erythropoietin receptor activation by a ligand-induced conformation change. Science 283: 990–993, 1999PubMedCrossRefGoogle Scholar
  75. 75.
    Ottemann KM, Xiao W, Shin YK, Koshland DE Jr: A piston model for transmembrane signaling of the aspartate receptor. Science 285: 1751–1754, 1999PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Kunio S. Misono
    • 1
  1. 1.Department of Molecular CardiologyLerner Research InstituteUSA

Personalised recommendations